Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gbup-group/IEBN
The official implementation of paper "Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise".
https://github.com/gbup-group/IEBN
Last synced: about 1 month ago
JSON representation
The official implementation of paper "Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise".
- Host: GitHub
- URL: https://github.com/gbup-group/IEBN
- Owner: gbup-group
- License: mit
- Created: 2019-08-08T14:01:46.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2023-06-16T02:38:03.000Z (over 1 year ago)
- Last Synced: 2024-08-03T19:08:17.700Z (5 months ago)
- Language: Python
- Homepage:
- Size: 152 KB
- Stars: 40
- Watchers: 4
- Forks: 8
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-normalization-techniques - [Python Reference
README
# Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise
![GitHub](https://img.shields.io/github/license/gbup-group/DIANet.svg)
![GitHub](https://img.shields.io/badge/gbup-%E7%A8%B3%E4%BD%8F-blue.svg)By [Senwei Liang*](https://leungsamwai.github.io), [Zhongzhan Huang*](https://github.com/dedekinds) (* contribute equally), [Mingfu Liang](https://wuyujack.github.io/) and [Haizhao Yang](https://haizhaoyang.github.io/).
This repository is the implementation of "Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise" [[paper]](https://arxiv.org/abs/1908.04008) on CIFAR-100 dataset. Our paper has been accepted for presentation at the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20). You can also check with the [AAAI proceeding version](https://aaai.org/ojs/index.php/AAAI/article/view/5917).
## Introduction
Instance Enhancement Batch Normalization (IEBN) is an attention-based version of BN which recalibrates channel information of BN by a simple linear transformation.
## Requirement
* Python 3.6 and [PyTorch 1.0](http://pytorch.org/)## Usage
```
python cifar.py -a iebn_resnet --dataset cifar100 --block-name bottleneck --depth 164 --epochs 164 --schedule 81 122 --gamma 0.1 --wd 1e-4 --checkpoint checkpoints/cifar100/resnet-164-iebn
```## Results
| | original | IEBN |
|:---------------:|:--------:|:------:|
| ResNet164 | 74.29 | 77.09 |**Notes:**
- Training on 2 GPUs## Citing IEBN
```
@inproceedings{liang2020instance,
title={Instance Enhancement Batch Normalization: An Adaptive Regulator of Batch Noise.},
author={Liang, Senwei and Huang, Zhongzhan and Liang, Mingfu and Yang, Haizhao},
booktitle={AAAI},
pages={4819--4827},
year={2020}
}
```## Acknowledgments
Many thanks to [bearpaw](https://github.com/bearpaw) for his simple and clean [Pytorch framework](https://github.com/bearpaw/pytorch-classification) for image classification task.