Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gclouduniverse/notebook_training
Execute Jupyter notebooks in Google Cloud AI training jobs
https://github.com/gclouduniverse/notebook_training
Last synced: 5 days ago
JSON representation
Execute Jupyter notebooks in Google Cloud AI training jobs
- Host: GitHub
- URL: https://github.com/gclouduniverse/notebook_training
- Owner: gclouduniverse
- License: mit
- Created: 2020-03-10T20:34:58.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2022-12-08T03:48:03.000Z (about 2 years ago)
- Last Synced: 2024-12-02T21:47:28.844Z (about 1 month ago)
- Language: Python
- Size: 32.2 KB
- Stars: 7
- Watchers: 5
- Forks: 2
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Cloud AI Notebook Training
This package allows to run a Jupyter notebook at Google Cloud AI Platform Training Jobs.
Install tool with pip by using `pip install gcloud-notebook-training`
## Syntax
```
gcloud-notebook-training [-h] --input-notebook INPUT_NOTEBOOK
[--project-id PROJECT_ID]
[--output-notebook OUTPUT_NOTEBOOK]
[--job-id JOB_ID]
[--region REGION]
[--worker-machine-type WORKER_MACHINE_TYPE]
[--bucket-name BUCKET_NAME]
[--max-running-time MAX_RUNNING_TIME]
[--container-uri CONTAINER_URI]
[--accelerator-type ACCELERATOR_TYPE]
[--service-account SERVICE_ACCOUNT]
```The only required parameter is --input-notebook.
This parameter accepts local path or GCS path.
For example:
```
gcloud-notebook-training --input-notebook /local/path/to/notebook.ipynb
```or
```
gcloud-notebook-training --input-notebook gs://bucket_name/notebook.ipynb
```The `output-notebook` path can be specified explicitly.
Same as the `input-notebook`, this parameter accepts local path or GCS path.
If the `output-notebook` is not specified, it will be implied as `input-notebook` plus 'output' suffix.
If `output-notebook` is a GCS path, then the tool will only submit the training job and exit.
If `output-notebook` is a local path, then the tool will wait until the training job succeeds, and then will download the output notebook.`container-uri` parameter specifies the container used by training job.
If this parameter is not specified, the tool will try to pull this information from the notebook metadata.