Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/gclouduniverse/notebook_training

Execute Jupyter notebooks in Google Cloud AI training jobs
https://github.com/gclouduniverse/notebook_training

Last synced: 5 days ago
JSON representation

Execute Jupyter notebooks in Google Cloud AI training jobs

Awesome Lists containing this project

README

        

# Cloud AI Notebook Training

This package allows to run a Jupyter notebook at Google Cloud AI Platform Training Jobs.

Install tool with pip by using `pip install gcloud-notebook-training`

## Syntax

```
gcloud-notebook-training [-h] --input-notebook INPUT_NOTEBOOK
[--project-id PROJECT_ID]
[--output-notebook OUTPUT_NOTEBOOK]
[--job-id JOB_ID]
[--region REGION]
[--worker-machine-type WORKER_MACHINE_TYPE]
[--bucket-name BUCKET_NAME]
[--max-running-time MAX_RUNNING_TIME]
[--container-uri CONTAINER_URI]
[--accelerator-type ACCELERATOR_TYPE]
[--service-account SERVICE_ACCOUNT]
```

The only required parameter is --input-notebook.

This parameter accepts local path or GCS path.

For example:

```
gcloud-notebook-training --input-notebook /local/path/to/notebook.ipynb
```

or
```
gcloud-notebook-training --input-notebook gs://bucket_name/notebook.ipynb
```

The `output-notebook` path can be specified explicitly.

Same as the `input-notebook`, this parameter accepts local path or GCS path.

If the `output-notebook` is not specified, it will be implied as `input-notebook` plus 'output' suffix.

If `output-notebook` is a GCS path, then the tool will only submit the training job and exit.
If `output-notebook` is a local path, then the tool will wait until the training job succeeds, and then will download the output notebook.

`container-uri` parameter specifies the container used by training job.
If this parameter is not specified, the tool will try to pull this information from the notebook metadata.