Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gedeck/practical-statistics-for-data-scientists
Code repository for O'Reilly book
https://github.com/gedeck/practical-statistics-for-data-scientists
Last synced: 5 days ago
JSON representation
Code repository for O'Reilly book
- Host: GitHub
- URL: https://github.com/gedeck/practical-statistics-for-data-scientists
- Owner: gedeck
- License: gpl-3.0
- Created: 2020-02-17T22:39:36.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2025-01-07T17:46:00.000Z (12 days ago)
- Last Synced: 2025-01-07T20:04:31.407Z (12 days ago)
- Language: Jupyter Notebook
- Size: 90 MB
- Stars: 2,849
- Watchers: 71
- Forks: 1,785
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-ai-data-github-repos - Practical Statistics for Data Scientists
- awesome-ai-data-github-repos - Practical Statistics for Data Scientists
README
[![](https://img.shields.io/badge/python-3.8--3.12-blue.svg)](https://www.python.org/downloads/)
![Python](https://github.com/gedeck/dmba/actions/workflows/build.yml/badge.svg)# Code repository
Practical Statistics for Data Scientists:
50+ Essential Concepts Using R and Python
by Peter Bruce, Andrew Bruce, and Peter Gedeck
- Publisher: O'Reilly Media; 2nd edition (June 9, 2020)
- ISBN-13: 978-1492072942
- Buy on
Amazon - Errata: http://oreilly.com/catalog/errata.csp?isbn=9781492072942
## Online
View the notebooks online:
[![nbviewer](https://raw.githubusercontent.com/jupyter/design/master/logos/Badges/nbviewer_badge.svg)](https://nbviewer.jupyter.org/github/gedeck/practical-statistics-for-data-scientists/tree/master/)
Excecute the notebooks in Binder:
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/gedeck/practical-statistics-for-data-scientists/HEAD)
This can take some time if the binder environment needs to be rebuilt.
## Other language versions
English:
Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python
2020: ISBN 149207294X
Google books,
Amazon
Japanese (2020-06-11):
データサイエンスのための統計学入門 第2版 ―予測、分類、統計モデリング、統計的機械学習とR/Pythonプログラミング
2020: ISBN 978-4-873-11926-7,
Shinya Ohashi (supervised), Toshiaki Kurokawa (translated), O'Reilly Japan Inc.
Google books,
Amazon,
Order here
German (2021-03-29):
Praktische Statistik für Data Scientists: 50+ essenzielle Konzepte mit R und Python
2021: ISBN 978-3-960-09153-0, Marcus Fraaß (Übersetzer), dpunkt.verlag GmbH
Google books,
Amazon
Order here
Korean (2021-05-07):
Practical Statistics for Data Scientists: 데이터 과학을 위한 통계(2판)
2021: ISBN 979-1-162-24418-0, Junyong Lee (translation), Hanbit Media, Inc.
Google books,
Order here
Polish (2021-06-16):
Statystyka praktyczna w data science. 50 kluczowych zagadnien w jezykach R i Python
2021: ISBN 978-8-328-37427-0, Helion
Google books,
Amazon,
Order here
Russian (2021-05-31):
Практическая статистика для специалистов Data Science, 2-е изд.
2021: ISBN 978-5-9775-6705-3, BHV St Petersburg
Google books,
Order here
Chinese complex (2021-07-29):
Practical Statistics for Data Scientists: 資料科學家的實用統計學 第二版
2021: ISBN 978-9-865-02841-1, Hong Weien (translation), GoTop Information Inc.
Order here
Chinese simplified (2021-10-15):
Practical Statistics for Data Scientists: 数据科学中的实用统计学(第2版)
2021: ISBN 978-7-115-56902-8, Chen Guangxin (translation), Posts & Telecom Press
Order here
English (Indian subcontinent & select countries only):
Practical Statistics for Data Scientists: 50+ Essential Concepts Using R And Python, Second Edition
2021: ISBN 978-8-194-43500-6, Shroff Publishers and Distributors Pvt. Ltd.
Order here
Spanish (2022-02-22):
Estadística práctica para ciencia de datos con R y Python, Second Edition
2022: ISBN 978-8-426-73443-3, Marcombo S.A.
Google books,
Amazon,
Order here
## See also
- The code repository for the first edition is at: https://github.com/andrewgbruce/statistics-for-data-scientists
# Setup of R and Python environments
We recommend using a conda environment to run the Python and R code.
```
conda create -n sfds #Create the conda environment named sfds.
conda activate sfds #Activate the environment we created.
conda env update -n sfds -f environment.yml #Update the depencies of the environment from environment.yml
```
The full list of Python and R dependencies from the [environment.yml](environment.yml) file:
```
python
jupyter
pandas
matplotlib
scipy
statsmodels
wquantiles
seaborn
scikit-learn
pygam
dmba
pydotplus
imbalanced-learn
prince
xgboost
graphviz
numpy
adjustText
r-essentials
r-base
r-vioplot
r-corrplot
r-gmodels
r-matrixstats
r-lmperm
r-pwr
r-fnn
r-klar
r-dmwr
r-xgboost
r-ellipse
r-mclust
r-ca
r-ggplot2
r-irkernel
r-boot
r-randomforest
```