Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/geekquad/flower-prediction
Basic Iris Flower Prediction. Learning how to host ML models using Flask and deploy it using Heroku.
https://github.com/geekquad/flower-prediction
flask-application heroku iris ml
Last synced: 26 days ago
JSON representation
Basic Iris Flower Prediction. Learning how to host ML models using Flask and deploy it using Heroku.
- Host: GitHub
- URL: https://github.com/geekquad/flower-prediction
- Owner: geekquad
- Created: 2020-11-28T10:38:45.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2020-11-29T09:42:19.000Z (about 4 years ago)
- Last Synced: 2024-11-10T08:43:38.455Z (3 months ago)
- Topics: flask-application, heroku, iris, ml
- Language: HTML
- Homepage: https://irisforecast.herokuapp.com/
- Size: 4.62 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Flower-Prediction
Basic Iris Flower Predcition.
Trained using Support Vector Machine Algorithm.
Learning how to deploy ML models using Flask.
### Setup:
1. Clone the repo:
```
$ git clone https://github.com/geekquad/Flower-Prediction.git
```2. Activate Environment:
```
$ python3 -m venv env
```3. Install dependencies:
```
$ pip install -r requirements.txt
```4. Run Flask server using
```
$ python app.py
```