Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/geektutu/tensorflow-tutorial-samples

TensorFlow2教程 TensorFlow 2.0 Tutorial 入门教程实战案例
https://github.com/geektutu/tensorflow-tutorial-samples

mnist openai-gym tensorflow tensorflow-mnist

Last synced: 13 days ago
JSON representation

TensorFlow2教程 TensorFlow 2.0 Tutorial 入门教程实战案例

Awesome Lists containing this project

README

        

# TensorFlow 2.0 Tutorial 入门教程实战案例

> 用最白话的语言,讲解机器学习、神经网络与深度学习
> 示例基于 TensorFlow 1.4 和 TensorFlow 2.0 实现

## 相关链接

- [Python 简明教程](https://geektutu.com/post/quick-python.html)
- [机器学习笔试面试题](https://geektutu.com/post/qa-ml-1.html),[Github](https://github.com/geektutu/interview-questions)
- [TensorFlow 2.0 中文文档](https://geektutu.com/post/tf2doc.html),[Github](https://github.com/geektutu/tensorflow2-docs-zh)
- [TensorFlow 2.0 图像识别&强化学习实战](https://geektutu.com/post/tensorflow2-mnist-cnn.html),[Github](https://github.com/geektutu/tensorflow-tutorial-samples)

## OpenAI gym

- [TensorFlow 2.0 (九) - 强化学习70行代码实战 Policy Gradient](https://geektutu.com/post/tensorflow2-gym-pg.html)
- [Github - gym/CartPole-v0-policy-gradient](https://github.com/geektutu/tensorflow-tutorial-samples/tree/master/gym/CartPole-v0-policy-gradient)
- 介绍了策略梯度算法(Policy Gradient)来玩 CartPole-v0

- [TensorFlow 2.0 (八) - 强化学习 DQN 玩转 gym Mountain Car](https://geektutu.com/post/tensorflow2-gym-dqn.html)
- [Github - gym/MountainCar-v0-dqn](https://github.com/geektutu/tensorflow-tutorial-samples/tree/master/gym/MountainCar-v0-dqn)
- 介绍了DQN(Deep Q-Learning)来玩MountainCar-v0游戏
- Q-Table用神经网络来代替。

- [TensorFlow 2.0 (七) - 强化学习 Q-Learning 玩转 OpenAI gym](https://geektutu.com/post/tensorflow2-gym-q-learning.html)
- [Github - gym/MountainCar-v0-q-learning](https://github.com/geektutu/tensorflow-tutorial-samples/tree/master/gym/MountainCar-v0-q-learning)
- 介绍了使用Q-Learning(创建Q-Table)来玩MountainCar-v0游戏
- 将连续的状态离散化。

- [TensorFlow 2.0 (六) - 监督学习玩转 OpenAI gym game ](https://geektutu.com/post/tensorflow2-gym-nn.html)
- [Github - gym/CartPole-v0-nn](https://github.com/geektutu/tensorflow-tutorial-samples/tree/master/gym/CartPole-v0-nn)
- 介绍了使用纯监督学习(神经网络)来玩CartPole-v0游戏
- 使用TensorFlow 2.0

## mnist

- [TensorFlow 2.0 (五) - mnist手写数字识别(CNN卷积神经网络)](https://geektutu.com/post/tensorflow2-mnist-cnn.html)
- [Github - v4_cnn](https://github.com/geektutu/tensorflow-tutorial-samples/tree/master/mnist/v4_cnn)
- 介绍了如何搭建CNN网络,准确率达到0.99
- 使用TensorFlow 2.0

- [TensorFlow入门(四) - mnist手写数字识别(制作h5py训练集)](https://geektutu.com/post/tensorflow-make-npy-hdf5-data-set.html)
- [Github - make_data_set](https://github.com/geektutu/tensorflow-tutorial-samples/tree/master/make_data_set)
- 介绍了如何使用 numpy 制作 npy 格式的数据集
- 介绍了如何使用 h5py 制作 HDF5 格式的数据集

- [TensorFlow入门(三) - mnist手写数字识别(可视化训练)](https://geektutu.com/post/tensorflow-mnist-tensorboard-training.html)
- [Github - mnist/v3](https://github.com/geektutu/tensorflow-tutorial-samples/tree/master/mnist/v3)
- 介绍了tensorboard的简单用法,包括标量图、直方图以及网络结构图

- [TensorFlow入门(二) - mnist手写数字识别(模型保存加载)](https://geektutu.com/post/tensorflow-mnist-save-ckpt.html)
- [Github - mnist/v2](https://github.com/geektutu/tensorflow-tutorial-samples/tree/master/mnist/v2)
- 介绍了 TensorFlow 中如何保存训练好的模型
- 介绍了如何从某一个模型为起点继续训练
- 介绍了模型如何加载使用,传入真实的图片如何识别

- [TensorFlow入门(一) - mnist手写数字识别(网络搭建)](https://geektutu.com/post/tensorflow-mnist-simplest.html)
- [Github - mnist/v1](https://github.com/geektutu/tensorflow-tutorial-samples/tree/master/mnist/v1)
- 这篇博客介绍了使用 TensorFlow 搭建最简单的神经网络。
- 包括输入输出、独热编码与损失函数,以及正确率的验证。