Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gengshan-y/dyn_pose
Dynamic pose estimation in MXNet. faster-rcnn detection + cpm pose estimation + LSTM dynamical modeling
https://github.com/gengshan-y/dyn_pose
Last synced: 2 months ago
JSON representation
Dynamic pose estimation in MXNet. faster-rcnn detection + cpm pose estimation + LSTM dynamical modeling
- Host: GitHub
- URL: https://github.com/gengshan-y/dyn_pose
- Owner: gengshan-y
- License: mit
- Created: 2017-05-20T03:00:09.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2017-12-14T19:07:58.000Z (about 7 years ago)
- Last Synced: 2024-08-01T22:41:14.847Z (5 months ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 1.16 MB
- Stars: 5
- Watchers: 3
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: License.md
Awesome Lists containing this project
- Awesome-MXNet - Dynamic pose estimation
README
# dyn_pose
Training and inference code for [LSTM-based action recognition model](http://www.contrib.andrew.cmu.edu/~gengshay/wordpress/index.php/424-2/).
Online version to be released later.## Steps
- [models](https://drive.google.com/open?id=1v1TeDwCWb426g_LWnuKkVHr8PZZR-P2S)
- pre-process data: preprocess.py / split.py
- extract pose: extract.py
- train model: train_lstm.py
- evaluate model: infer_lstm.py
- offline demo: example.py## Notes
- modify label_num in model/lstm.config## Utils
- display.ipynb: display pose estimation results
- run.sh: evaluation script
- test.ipynb: miscellaneous## TODO
- reduce spatial net size## Reference
- [Convolutional Pose Machines](https://github.com/shihenw/convolutional-pose-machines-release)