Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/georgiifirsov/machinelearningmodels
Library with implementation of several machine learning models. It is written in Python 3 with numpy.
https://github.com/georgiifirsov/machinelearningmodels
ai artificial-intelligence machine-learning ml pyhton pyhton3
Last synced: 10 days ago
JSON representation
Library with implementation of several machine learning models. It is written in Python 3 with numpy.
- Host: GitHub
- URL: https://github.com/georgiifirsov/machinelearningmodels
- Owner: GeorgiiFirsov
- License: gpl-3.0
- Created: 2019-12-28T16:36:12.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2019-12-29T13:53:45.000Z (almost 5 years ago)
- Last Synced: 2024-08-10T04:23:16.072Z (3 months ago)
- Topics: ai, artificial-intelligence, machine-learning, ml, pyhton, pyhton3
- Language: Jupyter Notebook
- Homepage:
- Size: 505 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# MachineLearningModels
This repository contains machine learning models implementation in Python 3.
You can look for some examples in files Example\.ipynb.
### Currently implemented
- [Generalized linear regression (with polynomials)](./ExampleLinearRegression.ipynb)
- [Multiple linear regression](./ExampleMultipleLinearRegression.ipynb)### Usage
Usage of these models is really simple - you just need to import required model class and fit it with your data.
#### Generalized linear regression
```python
from MachineLearning.LinearRegression import LinearRegression
from MachineLearning.Metrics import mean_squared_errormodel = LinearRegression(degree=3)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)print(mean_squared_error(y_pred, y_test))
```#### Multiple linear regression
```python
from MachineLearning.MultipleLinearRegression import MultipleLinearRegression
from MachineLearning.Metrics import mean_squared_errormodel = MultipleLinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)print(mean_squared_error(y_pred, y_test))
```