Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/geospatial-jeff/aiocogeo
Asynchronous cogeotiff reader
https://github.com/geospatial-jeff/aiocogeo
Last synced: 17 days ago
JSON representation
Asynchronous cogeotiff reader
- Host: GitHub
- URL: https://github.com/geospatial-jeff/aiocogeo
- Owner: geospatial-jeff
- License: mit
- Created: 2020-03-28T17:50:12.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2021-07-02T07:24:45.000Z (over 3 years ago)
- Last Synced: 2024-12-09T16:11:44.891Z (28 days ago)
- Language: Python
- Homepage:
- Size: 229 KB
- Stars: 73
- Watchers: 10
- Forks: 10
- Open Issues: 29
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.txt
- License: LICENSE
Awesome Lists containing this project
- awesome-earthobservation-code - aiocogeo - Asynchronous cogeotiff reader `Python` (`Python` processing of optical imagery (non deep learning) / Cloud Native Geospatial)
README
# aiocogeo
[![GHA](https://github.com/geospatial-jeff/aiocogeo/workflows/CI/badge.svg)](https://github.com/geospatial-jeff/aiocogeo/actions?query=workflow%3ACI)
[![codecov](https://codecov.io/gh/geospatial-jeff/aiocogeo/branch/master/graph/badge.svg)](https://codecov.io/gh/geospatial-jeff/aiocogeo)
[![pypi](https://img.shields.io/pypi/v/aiocogeo?color=%2334D058&label=pypi%20package)](https://pypi.org/project/aiocogeo)
[![license](https://img.shields.io/github/license/geospatial-jeff/aiocogeo.svg)](https://github.com/geospatial-jeff/aiocogeo/blob/master/LICENSE)## Installation
```
pip install aiocogeo# With S3 filesystem
pip install aiocogeo[s3]
```## Usage
COGs are opened using the `COGReader` asynchronous context manager:```python
from aiocogeo import COGReaderasync with COGReader("http://cog.tif") as cog:
...
```Several filesystems are supported:
- **HTTP/HTTPS** (`http://`, `https://`)
- **S3** (`s3://`)
- **File** (`/`)### Metadata
Generating a [rasterio-style profile](https://rasterio.readthedocs.io/en/latest/topics/profiles.html) for the COG:```python
async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
print(cog.profile)>>> {'driver': 'GTiff', 'width': 10280, 'height': 12190, 'count': 3, 'dtype': 'uint8', 'transform': Affine(0.6, 0.0, 367188.0,
0.0, -0.6, 3777102.0), 'blockxsize': 512, 'blockysize': 512, 'compress': 'lzw', 'interleave': 'pixel', 'crs': 'EPSG:26911', 'tiled': True, 'photometric': 'rgb'}
```#### Lower Level Metadata
A COG is composed of several IFDs, each with many TIFF tags:```python
from aiocogeo.ifd import IFD
from aiocogeo.tag import Tagasync with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
for ifd in cog:
assert isinstance(ifd, IFD)
for tag in ifd:
assert isinstance(tag, Tag)
```Each IFD contains more granular metadata about the image than what is included in the profile. For example, finding the
tilesize for each IFD:```python
async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
for ifd in cog:
print(ifd.TileWidth.value, ifd.TileHeight.value)>>> 512 512
128 128
128 128
128 128
128 128
128 128
```More advanced use cases may need access to tag-level metadata:
```python
async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/lzw_cog.tif") as cog:
first_ifd = cog.ifds[0]
assert first_ifd.tag_count == 24for tag in first_ifd:
print(tag)>>> Tag(code=258, name='BitsPerSample', tag_type=TagType(format='H', size=2), count=3, length=6, value=(8, 8, 8))
Tag(code=259, name='Compression', tag_type=TagType(format='H', size=2), count=1, length=2, value=5)
Tag(code=257, name='ImageHeight', tag_type=TagType(format='H', size=2), count=1, length=2, value=12190)
Tag(code=256, name='ImageWidth', tag_type=TagType(format='H', size=2), count=1, length=2, value=10280)
...
```### Image Data
The reader also has methods for reading internal image tiles and performing partial reads. Currently only jpeg, lzw, deflate, packbits, and webp compressions are supported.#### Image Tiles
Reading the top left tile of an image at native resolution:```python
async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/webp_cog.tif") as cog:
x = y = z = 0
tile = await cog.get_tile(x, y, z)ifd = cog.ifds[z]
assert tile.shape == (ifd.bands, ifd.TileHeight.value, ifd.TileWidth.value)
```
#### Partial Read
You can read a portion of the image by specifying a bounding box in the native crs of the image and an output shape:```python
async with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/webp_cog.tif") as cog:
assert cog.epsg == 26911
partial_data = await cog.read(bounds=(368461,3770591,368796,3770921), shape=(512,512))
```
#### Internal Masks
If the COG has an internal mask, the returned array will be a masked array:```python
import numpy as npasync with COGReader("https://async-cog-reader-test-data.s3.amazonaws.com/naip_image_masked.tif") as cog:
assert cog.is_maskedtile = await cog.get_tile(0,0,0)
assert np.ma.is_masked(tile)
```
### Configuration
Configuration options are exposed through environment variables:
- **INGESTED_BYTES_AT_OPEN** - defines the number of bytes in the first GET request at file opening (defaults to 16KB)
- **HEADER_CHUNK_SIZE** - chunk size used to read header (defaults to 16KB)
- **ENABLE_BLOCK_CACHE** - determines if image blocks are cached in memory (defaults to TRUE)
- **ENABLE_HEADER_CACHE** - determines if COG headers are cached in memory (defaults to TRUE)
- **HTTP_MERGE_CONSECUTIVE_RANGES** - determines if consecutive ranges are merged into a single request (defaults to FALSE)
- **BOUNDLESS_READ** - determines if internal tiles outside the bounds of the IFD are read (defaults to TRUE)
- **BOUNDLESS_READ_FILL_VALUE** - determines the value used to fill boundless reads (defaults to 0)
- **LOG_LEVEL** - determines the log level used by the package (defaults to ERROR)
- **VERBOSE_LOGS** - enables verbose logging, designed for use when `LOG_LEVEL=DEBUG` (defaults to FALSE)
- **AWS_REQUEST_PAYER** - set to `requester` to enable reading from S3 RequesterPays buckets.
- **ZOOM_LEVEL_STRATEGY** - mimics [GDAL's `ZOOM_LEVEL_STRATEGY` creation option](https://gdal.org/drivers/raster/cog.html#reprojection-related-creation-options):
- `AUTO` or `50` (default) upsamples or downsamples the zoom level whose resolution is closest to the desired resolution.
- `LOWER` or `100` always upsamples the zoom level immediately below the desired resolution (requesting less data).
- `UPPER` or `0` always downsamples the zoom level immediately above the desired resoluion (requesting more data).
- Another integer from `0` through `100`: if the desired resolution more this _percentage_ of the way from the zoom level immediately below to the zoom level immediately above, then upsample the zoom level immediately below, else downsample the zoom level immediately above. For example, `1` is the same as `UPPER` unless the COG's resolution is very close to the zoom level below e.g. due to floating point imprecision.Refer to [`aiocogeo/config.py`](https://github.com/geospatial-jeff/aiocogeo/blob/master/aiocogeo/config.py) for more details about configuration options.
## CLI
```
$ aiocogeo --help
Usage: aiocogeo [OPTIONS] COMMAND [ARGS]...Options:
--install-completion [bash|zsh|fish|powershell|pwsh]
Install completion for the specified shell.
--show-completion [bash|zsh|fish|powershell|pwsh]
Show completion for the specified shell, to
copy it or customize the installation.--help Show this message and exit.
Commands:
create-tms Create OGC TileMatrixSet.
info Read COG metadata.```