Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/gerdm/prml

Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop
https://github.com/gerdm/prml

bayesian-statistics machine-learning pattern-recognition prml python

Last synced: 23 days ago
JSON representation

Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Awesome Lists containing this project

README

        

# Pattern Recognition and Machine Learning (PRML)

![MDN](https://i.imgur.com/2uCUY3q.png)

[![nbviewer](https://raw.githubusercontent.com/jupyter/design/master/logos/Badges/nbviewer_badge.svg)](https://nbviewer.jupyter.org/github/gerdm/prml/tree/master/)

This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Pattern Recognition and Machine Learning book, as well as replicas for many of the graphs presented in the book.

## Discussions (new)
If you have any questions and/or requests, check out the [discussions](https://github.com/gerdm/prml/discussions) page!

## Useful Links
* [PRML Book](https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning)
* [Matrix Calculus](http://www.matrixcalculus.org/matrixCalculus)
* [The Matrix Cookbook](https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf)
* [PRML Errata](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-errata-1st-20110921.pdf)
* [More PRML Errata (repo)](https://github.com/yousuketakada/prml_errata)

## Content
```
.
├── README.md
├── chapter01
│   ├── einsum.ipynb
│   ├── exercises.ipynb
│   └── introduction.ipynb
├── chapter02
│   ├── Exercises.ipynb
│   ├── bayes-binomial.ipynb
│   ├── bayes-normal.ipynb
│   ├── density-estimation.ipynb
│   ├── exponential-family.ipynb
│   ├── gamma-distribution.ipynb
│   ├── mixtures-of-gaussians.ipynb
│   ├── periodic-variables.ipynb
│   ├── robbins-monro.ipynb
│   └── students-t-distribution.ipynb
├── chapter03
│   ├── bayesian-linear-regression.ipynb
│   ├── equivalent-kernel.ipynb
│   ├── evidence-approximation.ipynb
│   ├── linear-models-for-regression.ipynb
│   ├── ml-vs-map.ipynb
│   ├── predictive-distribution.ipynb
│   └── sequential-bayesian-learning.ipynb
├── chapter04
│   ├── exercises.ipynb
│   ├── fisher-linear-discriminant.ipynb
│   ├── least-squares-classification.ipynb
│   ├── logistic-regression.ipynb
│   └── perceptron.ipynb
├── chapter05
│   ├── backpropagation.ipynb
│   ├── bayesian-neural-networks.ipynb
│   ├── ellipses.ipynb
│   ├── imgs
│   │   └── f51.png
│   ├── mixture-density-networks.ipynb
│   ├── soft-weight-sharing.ipynb
│   └── weight-space-symmetry.ipynb
├── chapter06
│   ├── gaussian-processes.ipynb
│   └── kernel-regression.ipynb
├── chapter07
│   ├── relevance-vector-machines.ipynb
│   └── support-vector-machines.ipynb
├── chapter08
│   ├── exercises.ipynb
│   ├── graphical-model-inference.ipynb
│   ├── img.jpeg
│   ├── markov-random-fields.ipynb
│   ├── sum-product.ipynb
│   └── trees.ipynb
├── chapter09
│   ├── gaussian-mixture-models.ipynb
│   ├── k-means.ipynb
│   └── mixture-of-bernoulli.ipynb
├── chapter10
│   ├── exponential-mixture-gaussians.ipynb
│   ├── local-variational-methods.ipynb
│   ├── mixture-gaussians.ipynb
│   ├── variational-logistic-regression.ipynb
│   └── variational-univariate-gaussian.ipynb
├── chapter11
│   ├── adaptive-rejection-sampling.ipynb
│   ├── gibbs-sampling.ipynb
│   ├── hybrid-montecarlo.ipynb
│   ├── markov-chain-motecarlo.ipynb
│   ├── rejection-sampling.ipynb
│   ├── slice-sampling.ipynb
│   └── transformation-random-variables.ipynb
├── chapter12
│   ├── bayesian-pca.ipynb
│   ├── kernel-pca.ipynb
│   ├── ppca.py
│   ├── principal-component-analysis.ipynb
│   └── probabilistic-pca.ipynb
├── chapter13
│   ├── em-hidden-markov-model.ipynb
│   ├── hidden-markov-model.ipynb
│   └── linear-dynamical-system.ipynb
├── chapter14
│   ├── CART.ipynb
│   ├── boosting.ipynb
│   ├── cmm-linear-regression.ipynb
│   ├── cmm-logistic-regression.ipynb
│   └── tree.py
└── misc
└── tikz
├── ch13-hmm.tex
└── ch8-sum-product.tex

17 directories, 73 files
```