Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/getcontrol/kyc-train-model
Train TensorFlow model for KYC
https://github.com/getcontrol/kyc-train-model
kyc midv-500 python tensorflow tensorflow-examples tensorflow-models
Last synced: about 1 month ago
JSON representation
Train TensorFlow model for KYC
- Host: GitHub
- URL: https://github.com/getcontrol/kyc-train-model
- Owner: getcontrol
- Created: 2020-03-02T18:09:52.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-12-08T03:43:35.000Z (almost 2 years ago)
- Last Synced: 2024-10-10T08:43:42.803Z (about 1 month ago)
- Topics: kyc, midv-500, python, tensorflow, tensorflow-examples, tensorflow-models
- Language: Python
- Size: 63.4 MB
- Stars: 32
- Watchers: 3
- Forks: 9
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Train Tensorflow Model for Tensorflow Verification
This repo contains the Python code to produce the dataset and train the Tensorflow model for use in [KYC-tensorflow](https://github.com/getcontrol/KYC-tensorflow). This training model transfers learning from a previously trained model mobilenet_v2.
# Installation Instructions
1. Clone the repo.
``` git clone https://github.com/getcontrol/KYC-train-model ```
``` cd KYC-train-model```
2. Download and unzip the the MIDV-500 formatted dataset to 'verification-train-model' directory.
https://www.dropbox.com/s/dmjbat0e1re5rkf/midv_500.zip?dl=0
3. Make a 'data' directory in verification-train-model for the dataset generation and an 'output' folder for testing.
```mkdir data```
```mkdir output```
4. Create and activate a Python 3 Virtual environment.
```python3 -m venv env```
```source env/bin/activate```
5. Install Requirements.
```pip install -r requirements.txt```
6. Synthesize training data.
```python synthesis_data.py```
```python receipt_dataset.py```
7. Train model.
```python train.py```
# Test Model
Samples are included in 'test_samples_600*800'.
```python test.py```
![Results](https://github.com/getcontrol/KYC-train-model/blob/master/model-result.png)
### Citation
Please cite this paper, if using midv dataset, link for dataset provided in paper@article{DBLP:journals/corr/abs-1807-05786,
author = {Vladimir V. Arlazarov and
Konstantin Bulatov and
Timofey S. Chernov and
Vladimir L. Arlazarov},
title = {{MIDV-500:} {A} Dataset for Identity Documents Analysis and Recognition
on Mobile Devices in Video Stream},
journal = {CoRR},
volume = {abs/1807.05786},
year = {2018},
url = {http://arxiv.org/abs/1807.05786},
archivePrefix = {arXiv},
eprint = {1807.05786},
timestamp = {Mon, 13 Aug 2018 16:46:35 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1807-05786},
bibsource = {dblp computer science bibliography, https://dblp.org}
}