Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/getnamo/MachineLearningRemote-Unreal
Machine Learning plugin for the Unreal Engine, encapsulating calls to remote python servers running e.g. Tensorflow/Pytorch.
https://github.com/getnamo/MachineLearningRemote-Unreal
cpp machine-learning plugin pytorch socket-io tensorflow unreal
Last synced: 2 months ago
JSON representation
Machine Learning plugin for the Unreal Engine, encapsulating calls to remote python servers running e.g. Tensorflow/Pytorch.
- Host: GitHub
- URL: https://github.com/getnamo/MachineLearningRemote-Unreal
- Owner: getnamo
- License: mit
- Created: 2019-04-24T05:12:36.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2023-11-01T22:38:37.000Z (about 1 year ago)
- Last Synced: 2024-05-01T19:48:42.369Z (8 months ago)
- Topics: cpp, machine-learning, plugin, pytorch, socket-io, tensorflow, unreal
- Language: C++
- Homepage:
- Size: 129 KB
- Stars: 134
- Watchers: 7
- Forks: 37
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome_unreal_engine_4_-_5 - tensorflow remote
- awesome_unreal_engine_4_-_5 - tensorflow remote
README
# MachineLearningRemote Unreal Plugin
A Machine Learning (ML) plugin for the Unreal Engine, encapsulating calls to remote python servers running python ML libraries like Tensorflow or Pytorch. Depends on server complement repository: https://github.com/getnamo/ml-remote-server.[![GitHub release](https://img.shields.io/github/release/getnamo/MachineLearningRemote-Unreal.svg)](https://github.com/getnamo/MachineLearningRemote-Unreal/releases)
[![Github All Releases](https://img.shields.io/github/downloads/getnamo/MachineLearningRemote-Unreal/total.svg)](https://github.com/getnamo/MachineLearningRemote-Unreal/releases)Should have the same api as [tensorflow-ue4](https://github.com/getnamo/tensorflow-ue4), but with freedom to run a host server on platform of choice (e.g. remote win/linux/mac instances) and without a hard bind to the tensorflow library.
## Unreal Machine Learning Plugin Variants
Want to run tensorflow or pytorch on a remote (or local) python server?
- https://github.com/getnamo/MachineLearningRemote-Unreal
Want to use tensorflow python api with a python instance embedded in your unreal engine project?
- https://github.com/getnamo/TensorFlow-Unreal
Want native tensorflow inference? (WIP)
- https://github.com/getnamo/TensorFlowNative-Unreal
## Quick Install & Setup
1. Install and setup https://github.com/getnamo/ml-remote-server on your target backend (can be a local folder), or setup the one embedded in plugin.
2. Download [Latest Release](https://github.com/getnamo/MachineLearningRemote-Unreal/releases)
3. Create new or choose project.
4. Browse to your project folder (typically found at Documents/Unreal Project/{Your Project Root})
5. Copy Plugins folder into your Project root.
6. Plugin should be now ready to use. Remember to startup your [server](https://github.com/getnamo/ml-remote-server) when using this plugin.## How to use
### Blueprint API
Add a ```MachineLearningRemote``` component to an actor of choice
![](https://i.imgur.com/Mx3gNAi.png)
Change server endpoint and ```DefaultScript``` to fit your use case. ```DefaultScript``` is the file name of your ML script which is placed in your *<[server](https://github.com/getnamo/ml-remote-server)>/scripts* folder. See https://github.com/getnamo/MachineLearningRemote-Unreal#python-api for example scripts.
![](https://i.imgur.com/R3YVPtm.png)
In your script the ```on_setup``` and if ```self.should_train_on_start``` is true ```on_begin_training``` gets called. When your script has trained or it is otherwise ready, you can send inputs to it using ```SendSIOJsonInput``` or other variants (string/raw).
![](https://i.imgur.com/WjmFLAu.png)
Your inputs will be processed on your script side and any value you return from there will be sent back and returned in ```ResultData``` as *USIOJsonValue* in your latent callback.
#### Other input variants
See https://github.com/getnamo/MachineLearningRemote-Unreal/blob/master/Source/MachineLearningRemote/Public/MachineLearningRemoteComponent.h for all variants
#### Custom Function
Change the ```FunctionName``` parameter in the ```SendSIOJsonInput``` to call a different function name in your script. This name will be used verbatim.
### Python API
These scripts should be placed in your *<[server](https://github.com/getnamo/ml-remote-server)>/scripts* folder. If a matching script is defined in your ```MachineLearningRemote```->```DefaultScript``` property it should load on connect.Keep in mind that ```tensorflow``` is optional and used as an illustrative example of ML, you can use any other valid python library e.g. pytorch instead without issue.
See https://github.com/getnamo/ml-remote-server/tree/master/scripts for additional examples.
See https://github.com/getnamo/TensorFlow-Unreal#python-api for more detailed api examples.#### empty_example
Bare bones API example.
```python
import tensorflow as tf
from mlpluginapi import MLPluginAPIclass ExampleAPI(MLPluginAPI):
#optional api: setup your model for training
def on_setup(self):
pass
#optional api: parse input object and return a result object, which will be converted to json for UE4
def on_json_input(self, input):
result = {}
return result#optional api: start training your network
def on_begin_training(self):
pass#NOTE: this is a module function, not a class function. Change your CLASSNAME to reflect your class
#required function to get our api
def get_api():
#return CLASSNAME.getInstance()
return ExampleAPI.get_instance()
```
#### add_exampleSuper basic example showing how to add using the tensorflow library.
```python
import tensorflow as tf
import unreal_engine as ue #for remote logging only, this is a proxy import to enable same functionality as local variants
from mlpluginapi import MLPluginAPIclass ExampleAPI(MLPluginAPI):
#expected optional api: setup your model for training
def on_setup(self):
self.sess = tf.InteractiveSession()
#self.graph = tf.get_default_graph()self.a = tf.placeholder(tf.float32)
self.b = tf.placeholder(tf.float32)#operation
self.c = self.a + self.bue.log('setup complete')
pass
#expected optional api: parse input object and return a result object, which will be converted to json for UE4
def on_json_input(self, json_input):
ue.log(json_input)feed_dict = {self.a: json_input['a'], self.b: json_input['b']}
raw_result = self.sess.run(self.c, feed_dict)
ue.log('raw result: ' + str(raw_result))
return {'c':raw_result.tolist()}
#custom function to change the op
def change_operation(self, type):
if(type == '+'):
self.c = self.a + self.belif(type == '-'):
self.c = self.a - self.b
ue.log('operation changed to ' + type)#expected optional api: start training your network
def on_begin_training(self):
pass
#NOTE: this is a module function, not a class function. Change your CLASSNAME to reflect your class
#required function to get our api
def get_api():
#return CLASSNAME.get_instance()
return ExampleAPI.get_instance()
```#### mnist_simple
One of the most basic ML examples using tensorflow to train a softmax mnist recognizer.
```python
#Converted to ue4 use from: https://www.tensorflow.org/get_started/mnist/beginners
#mnist_softmax.py: https://github.com/tensorflow/tensorflow/blob/r1.1/tensorflow/examples/tutorials/mnist/mnist_softmax.py# Import data
from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tf
import unreal_engine as ue
from mlpluginapi import MLPluginAPIimport operator
class MnistSimple(MLPluginAPI):
#expected api: storedModel and session, json inputs
def on_json_input(self, jsonInput):
#expect an image struct in json format
pixelarray = jsonInput['pixels']
ue.log('image len: ' + str(len(pixelarray)))#embedd the input image pixels as 'x'
feed_dict = {self.model['x']: [pixelarray]}result = self.sess.run(self.model['y'], feed_dict)
#convert our raw result to a prediction
index, value = max(enumerate(result[0]), key=operator.itemgetter(1))ue.log('max: ' + str(value) + 'at: ' + str(index))
#set the prediction result in our json
jsonInput['prediction'] = indexreturn jsonInput
#expected api: no params forwarded for training? TBC
def on_begin_training(self):ue.log("starting mnist simple training")
self.scripts_path = ue.get_content_dir() + "Scripts"
self.data_dir = self.scripts_path + '/dataset/mnist'mnist = input_data.read_data_sets(self.data_dir)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b# Define loss and optimizer
y_ = tf.placeholder(tf.int64, [None])# The raw formulation of cross-entropy,
#
# tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
# reduction_indices=[1]))
#
# can be numerically unstable.
#
# So here we use tf.losses.sparse_softmax_cross_entropy on the raw
# outputs of 'y', and then average across the batch.
cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=y)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)#update session for this thread
self.sess = tf.InteractiveSession()
tf.global_variables_initializer().run()# Train
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
self.sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
if i % 100 == 0:
ue.log(i)
if(self.should_stop):
ue.log('early break')
break# Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), y_)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
finalAccuracy = self.sess.run(accuracy, feed_dict={x: mnist.test.images,
y_: mnist.test.labels})
ue.log('final training accuracy: ' + str(finalAccuracy))
#return trained model
self.model = {'x':x, 'y':y, 'W':W,'b':b}#store optional summary information
self.summary = {'x':str(x), 'y':str(y), 'W':str(W), 'b':str(b)}self.stored['summary'] = self.summary
return self.stored#required function to get our api
def get_api():
#return CLASSNAME.get_instance()
return MnistSimple.get_instance()
```### C++ API
Available since 0.3.1.
Same as blueprint API except for one additional callback variant. Use the lambda overloaded functions e.g. assuming you have a component defined as
```c++
UMachineLearningRemoteComponent* MLComponent; //NB: this needs to be allocated with NewObject or CreateDefaultSubobject
```#### SendRawInput
```c++
//Let's say you want to send some raw data
TArray InputData;
//... fillMLComponent->SendRawInput(InputData, [this](TArray& ResultData)
{
//Now we got our results back, do something with them here
}, FunctionName);
```#### SendStringInput
Keep in mind that if you're using USIOJConvert utilities you'll need to add *SIOJson*, and *Json* as dependency modules in your project build.cs.
```c#
PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject", "Engine", "InputCore", "Json", "SIOJson" });
```Sending just a String
```c++
FString InputString = TEXT("Some Data");MLComponent->SendStringInput(InputString, [this](const FString& ResultData)
{
//e.g. just print the result
UE_LOG(LogTemp, Log, TEXT("Got some results: %s"), *ResultData);
}, FunctionName);
```A custom JsonObject
```c++
//Make an object {"myKey":"myValue"}
TSharedPtr JsonObject = MakeShareable(new FJsonObject);
JsonObject->SetStringField(TEXT("myKey"), TEXT("myValue"));
FString InputString = USIOJConvert::ToJsonString(JsonObject);MLComponent->SendStringInput(InputString, [this](const FString& ResultData)
{
//assuming you got a json string response we could query it, e.g. assume {"someNumber":5}
TSharedPtr JsonObject = USIOJConvert::ToJsonObject(ResultData);
double MyNumber = JsonObject->GetNumberField("someNumber");
//do something with your number result
}, FunctionName);
```Structs via Json
```c++
//Let's say you want to send some struct data in json formatUSTRUCT()
struct FTestCppStruct
{
GENERATED_BODY()UPROPERTY()
int32 Index;UPROPERTY()
float SomeNumber;UPROPERTY()
FString Name;
};//...
FTestCppStruct TestStruct;
TestStruct.Name = TEXT("George");
TestStruct.Index = 5;
TestStruct.SomeNumber = 5.123f;
FString StructJsonString = USIOJConvert::ToJsonString(USIOJConvert::ToJsonObject(FTestCppStruct::StaticStruct(), &TestStruct));//In this example we're using the same struct type for the result, but you could use a different one or custom Json
FTestCppStruct ResultStruct;MLComponent->SendStringInput(StructJsonString, [this, &ResultStruct](const FString& ResultData)
{
//do something with the result, let's say we we have another struct of same type and we'd like to fill it with the results
USIOJConvert::JsonObjectToUStruct(USIOJConvert::ToJsonObject(ResultData), FTestCppStruct::StaticStruct(), &ResultStruct);
}, FunctionName);
```