Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/geyang/tf_logger

logging utility for tensorboard
https://github.com/geyang/tf_logger

pytorch tensorboard tensorboard-visualizations tensorflow

Last synced: about 2 months ago
JSON representation

logging utility for tensorboard

Awesome Lists containing this project

README

        

# TF_Logger, A Tensorboard Logging Utility for Non-Tensorflow Python Projects

```bash
pip install tf_logger
```

## Usage

```python
from tf_logger import TF_Logger

logger = TF_Logger(log_directory="/tmp/logs/tf_logger_test/")

logger.log(index=3, note='this is a log entry!')
logger.flush()

# Images
face = scipy.misc.face()
face_bw = scipy.misc.face(gray=True)
logger.log_image(index=4, color_image=face, black_white=face_bw)
image_bw = np.zeros((64, 64, 1))
image_bw_2 = scipy.misc.face(gray=True)[::4, ::4]

# now print a stack
for i in range(10):
logger.log_image(i, animation=[face] * 5)
```

![logging images using tf_logger](./figures/logging_images.png)

> I'm planning on writing a better ML dashboard in the future.

This version of logger is integrated with `tensorboard` and at the same time prints the data in a tabular format to your `stdout`.
- can silence `stdout` per key (per `logger.log` call)
- can print with color: `logger.log(timestep, some_key=green(some_data))`
- can print with custom formatting: `logger.log(timestep, some_key=green(some_data, percent))` where `percent`
- uses the correct `unix` table characters (please stop using `|` and `+`. **Use `│`, `┼` instead**)

A typical print out of this logger look like the following:

```python
from tf_logger import TF_Logger

logger = TF_Logger(log_directory=f"/mnt/bucket/deep_Q_learning/{datetime.now(%Y%m%d-%H%M%S.%f):}")

logger.log_params(G=vars(G), RUN=vars(RUN), Reporting=vars(Reporting))
```
outputs the following

![example_real_log_output](./figures/example_log_output.png)

And the data from multiple experiments can be views with tensorboard.

![tensorboard_example](./figures/tensorboard_example.png)

```log
═════════════════════════════════════════════════════
G
───────────────────────────────┬─────────────────────
env_name │ MountainCar-v0
seed │ None
stochastic_action │ True
conv_params │ None
value_params │ (64,)
use_layer_norm │ True
buffer_size │ 50000
replay_batch_size │ 32
prioritized_replay │ True
alpha │ 0.6
beta_start │ 0.4
beta_end │ 1.0
prioritized_replay_eps │ 1e-06
grad_norm_clipping │ 10
double_q │ True
use_dueling │ False
exploration_fraction │ 0.1
final_eps │ 0.1
n_timesteps │ 100000
learning_rate │ 0.001
gamma │ 1.0
learning_start │ 1000
learn_interval │ 1
target_network_update_interval │ 500
═══════════════════════════════╧═════════════════════
RUN
───────────────────────────────┬─────────────────────
log_directory │ /mnt/slab/krypton/machine_learning/ge_dqn/2017-11-20/162048.353909-MountainCar-v0-prioritized_replay(True)
checkpoint │ checkpoint.cp
log_file │ output.log
═══════════════════════════════╧═════════════════════
Reporting
───────────────────────────────┬─────────────────────
checkpoint_interval │ 10000
reward_average │ 100
print_interval │ 10
═══════════════════════════════╧═════════════════════
╒════════════════════╤════════════════════╕
│ timestep │ 1999 │
├────────────────────┼────────────────────┤
│ episode │ 10 │
├────────────────────┼────────────────────┤
│ total reward │ -200.0 │
├────────────────────┼────────────────────┤
│ total reward/mean │ -200.0 │
├────────────────────┼────────────────────┤
│ total reward/max │ -200.0 │
├────────────────────┼────────────────────┤
│time spent exploring│ 82.0% │
├────────────────────┼────────────────────┤
│ replay beta │ 0.41 │
╘════════════════════╧════════════════════╛
```

```python
from tf_logger import TF_Logger

logger = TF_Logger('/mnt/slab/krypton/unitest')
logger.log(0, some=Color(0.1, 'yellow'))
logger.log(1, some=Color(0.28571, 'yellow', lambda v: f"{v * 100:.5f}%"))
logger.log(2, some=Color(0.85, 'yellow', percent))
logger.log(3, {"some_var/smooth": 10}, some=Color(0.85, 'yellow', percent))
logger.log(4, some=Color(10, 'yellow'))
logger.log_histogram(4, td_error_weights=[0, 1, 2, 3, 4, 2, 3, 4, 5])
```

colored output: (where the values are yellow)
```log
╒════════════════════╤════════════════════╕
│ some │ 0.1 │
╘════════════════════╧════════════════════╛
╒════════════════════╤════════════════════╕
│ some │ 28.57100% │
╘════════════════════╧════════════════════╛
╒════════════════════╤════════════════════╕
│ some │ 85.0% │
╘════════════════════╧════════════════════╛
╒════════════════════╤════════════════════╕
│ some var/smooth │ 10 │
├────────────────────┼────────────────────┤
│ some │ 85.0% │
╘════════════════════╧════════════════════╛
```
![logger-colored-output](./figures/logger_color_output.png)