Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ghaiszaher/foggy-cyclegan
Fog Simulation using Generative Adversarial Networks (GAN). This code is the implementation of the master thesis Simulating Weather Conditions on Digital Images. It uses a modified CycleGAN model to synthesize fog on clear images.
https://github.com/ghaiszaher/foggy-cyclegan
cyclegan cyclegan-tensorflow deep-learning dissertation fog gan generative-adversarial-network image-processing msc-thesis simulating-weather-conditions
Last synced: 4 days ago
JSON representation
Fog Simulation using Generative Adversarial Networks (GAN). This code is the implementation of the master thesis Simulating Weather Conditions on Digital Images. It uses a modified CycleGAN model to synthesize fog on clear images.
- Host: GitHub
- URL: https://github.com/ghaiszaher/foggy-cyclegan
- Owner: ghaiszaher
- License: gpl-3.0
- Created: 2020-03-05T20:19:11.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2024-12-24T00:44:21.000Z (14 days ago)
- Last Synced: 2024-12-27T11:10:05.985Z (11 days ago)
- Topics: cyclegan, cyclegan-tensorflow, deep-learning, dissertation, fog, gan, generative-adversarial-network, image-processing, msc-thesis, simulating-weather-conditions
- Language: Python
- Homepage: http://ghaiszaher.me/Foggy-CycleGAN/
- Size: 67.1 MB
- Stars: 73
- Watchers: 2
- Forks: 13
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
> [!NOTE]
> November 2024: New Pre-trained Models are available, check the [Pre-trained Models](#pre-trained-models) section.# Foggy-CycleGAN
This project is the implementation for my Computer Science MSc thesis in the University of Debrecen.
Dissertation:
[PDF] Simulating Weather Conditions on Digital Images (Debrecen, 2020).# Table of Content
- [Description](#description)
- [Code](#code)
- [Notebook](#notebook-)
- [Results (2020)](#results-2020)
- [Pre-trained Models](#pre-trained-models)
- [Results (2024)](#results-2024)
- [2024-11-17-rev1-000 Test Notebook](#2024-11-17-rev1-000-test-notebook-)## Description
**Foggy-CycleGAN** is a
A Jupyter Notebook file Foggy_CycleGAN.ipynb is available in the repository.## Code
The full source code is available under GPL-3.0 License in my Github repository ghaiszaher/Foggy-CycleGAN## Notebook
A Jupyter Notebook file Foggy_CycleGAN.ipynb is available in the repository.## Results (2020)
© Ghais Zaher 2020## Pre-trained Models
As legacy pre-trained models are no longer compatible with newer Keras/Tensorflow versions, I have retrained the model and made the new weights available to download.Each of the following models was trained in Google Colab using the same dataset, the parameters for building the models and number of trained epochs are a bit different:
Model
Trained Epochs
Config
2020-06 (legacy)
145
use_transmission_map=False
use_gauss_filter=False
use_resize_conv=False
2024-11-17-rev1-000
522
use_transmission_map=False
use_gauss_filter=False
use_resize_conv=False
2024-11-17-rev2-110
100
use_transmission_map=True
use_gauss_filter=True
use_resize_conv=False
2024-11-17-rev3-111
103
use_transmission_map=True
use_gauss_filter=True
use_resize_conv=True
2024-11-17-rev4-001
39
use_transmission_map=False
use_gauss_filter=False
use_resize_conv=True
## Results (2024)
The results of the new models are similar to the previous ones, here are some samples:
Clear
2024-11-17-rev1-000
2024-11-17-rev2-110
2024-11-17-rev3-111
2024-11-17-rev4-001
## 2024-11-17-rev1-000 Test Notebook
A Jupyter Notebook file 2024-11-17-rev1-000-test.ipynb is available in the repository to test the 2024-11-17-rev1-000 model.