Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ghazaleze/data-mining-fundamentals
my codes of data mining fundamentals course
https://github.com/ghazaleze/data-mining-fundamentals
association-rules classifier clustering data-mining diagram evaluation jupyter-notebook linear-regression mlp-classifier modeling neural-network numpy pandas pca python random-forest skit-learn tree
Last synced: 2 months ago
JSON representation
my codes of data mining fundamentals course
- Host: GitHub
- URL: https://github.com/ghazaleze/data-mining-fundamentals
- Owner: GhazaleZe
- License: mit
- Created: 2021-02-18T18:36:52.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-07-16T15:55:56.000Z (over 3 years ago)
- Last Synced: 2024-01-30T07:46:33.113Z (12 months ago)
- Topics: association-rules, classifier, clustering, data-mining, diagram, evaluation, jupyter-notebook, linear-regression, mlp-classifier, modeling, neural-network, numpy, pandas, pca, python, random-forest, skit-learn, tree
- Language: Jupyter Notebook
- Homepage:
- Size: 2.67 MB
- Stars: 5
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Data Mining Fundamentals
The codes of my data mining fundamentals course
## HW1 main topics:
- Start working with pandas and numpy (Q3)
## HW2 main topics:
- Preprocessing (Q1)
- Missing Data (Q2, Q3)
- Normalize and Standardization (Q4)
- Outliers (Q5)
- Binnig (Q6)
## HW3 main topics:
- Summary and visualization (Q1)
- Correlation (Q2)
- Contingency Table (Q3)
- Test and Train (Q4)
- DecisionTreeClassifier with criterion='gini' (Q5)
## HW4 main topics:
- DecisionTreeClassifier with criterion='entropy' (Q1)
- RandomForestClassifier (Q2)
- confusion_matrix (Q3)
- classification_report (Q3)
## HW5 main topics:
- Neural Network(MLPClassifier) (Q1)
- Clustering (Q2,Q3)
## HW6 main topics:
- Linear Regression (Q1, Q2)
- PCA (Q3)
- Association Rule (Q4)
## HW7 main topics:
- Logistic Regression (Q1)
- Poisson Regression (Q2)
- Sequence Pattern Mining (Q3)
- Advanced Association Rule Mining (Q4)