Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/giannisnik/cnn-graph-classification
A convolutional neural network for graph classification in PyTorch
https://github.com/giannisnik/cnn-graph-classification
convolutional-neural-networks graph-classification graph-kernels
Last synced: 22 days ago
JSON representation
A convolutional neural network for graph classification in PyTorch
- Host: GitHub
- URL: https://github.com/giannisnik/cnn-graph-classification
- Owner: giannisnik
- Created: 2017-08-17T15:41:57.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2019-02-15T17:11:49.000Z (almost 6 years ago)
- Last Synced: 2024-08-01T03:46:07.285Z (4 months ago)
- Topics: convolutional-neural-networks, graph-classification, graph-kernels
- Language: Python
- Homepage:
- Size: 3.09 MB
- Stars: 90
- Watchers: 7
- Forks: 20
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-graph-classification - [Python Reference
README
## Kernel Graph Convolutional Neural Networks
Code for the paper [Kernel Graph Convolutional Neural Networks](https://link.springer.com/chapter/10.1007/978-3-030-01418-6_3).### Requirements
Code is written in Python 3.6 and requires:
* PyTorch 0.3
* NetworkX 1.11
* igraph 0.7
* scikit-learn 0.18### Datasets
Use the following link to download datasets:
```
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
```
Extract the datasets into the `datasets` folder.### Run the model
First, specify the dataset and the hyperparameters in the `main.py` file. Then, use the following command:```
$ python main.py
```### Cite
Please cite our paper if you use this code:
```
@inproceedings{nikolentzos2018kernel,
title={Kernel Graph Convolutional Neural Networks},
author={Nikolentzos, Giannis and Meladianos, Polykarpos and Tixier, Antoine Jean-Pierre and Skianis, Konstantinos and Vazirgiannis, Michalis},
booktitle={International Conference on Artificial Neural Networks},
pages={22--32},
year={2018},
organization={Springer}
}
```-----------
Provided for academic use only