Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/giuseppegrieco/keras-tuner-cv

Extension for keras tuner that adds a set of classes to implement cross validation techniques.
https://github.com/giuseppegrieco/keras-tuner-cv

cross-validation keras keras-tuner keras-tuner-cross-validation

Last synced: 4 months ago
JSON representation

Extension for keras tuner that adds a set of classes to implement cross validation techniques.

Awesome Lists containing this project

README

        

[![DOI](https://zenodo.org/badge/478066605.svg)](https://zenodo.org/badge/latestdoi/478066605)

# Keras Tuner Cross Validation
Extension for keras tuner that adds a set of classes to implement cross validation methodologies.

## Install
```
$ pip install keras_tuner_cv
```

## Implemented methodologies
Here is the list of implemented methodologies and how to use them!
### Outer Cross Validation

```python
from keras_tuner_cv.outer_cv import OuterCV

from keras_tuner.tuners import RandomSearch

from sklearn.model_selection import KFold

cv = KFold(n_splits=5, random_state=12345, shuffle=True),

outer_cv = OuterCV(
# You can use any class extendind:
# sklearn.model_selection.cros.BaseCrossValidator
cv,
# You can use any class extending:
# keras_tuner.engine.tuner.Tuner, e.g. RandomSearch
RandomSearch,
# Tuner parameters both positional and named ones
...
)
```
### Inner Cross Validation
```python
from keras_tuner_cv.outer_cv import OuterCV

from keras_tuner.tuners import RandomSearch

from sklearn.model_selection import KFold

cv = KFold(n_splits=5, random_state=12345, shuffle=True),

# You can use any class extending:
# keras_tuner.engine.tuner.Tuner, e.g. RandomSearch
outer_cv = inner_cv(RandomSearch)(
hypermodel,
# You can use any class extendind:
# sklearn.model_selection.cros.BaseCrossValidator
cv,
# Tuner positional parameters except hypermodel
...,
# Saves the history of all metrics observed across the epochs
# in json format.
save_history=False,
# Saves the model output for both the training and validation
# datasets in numpy format.
save_output=False,
# Indicates when or not to reload the best weights w.r.t. to
# the objective indicated for the calculation of output and
# scores.
restore_best=True,
# Tuner named parameters except hypermodel
...
)
```

## License
Keras Tuner CV is released under the [GPL v3](LICENSE).