An open API service indexing awesome lists of open source software.

https://github.com/givasile/effector

Effector - a Python package for global and regional effect methods
https://github.com/givasile/effector

explainability iml xai

Last synced: about 17 hours ago
JSON representation

Effector - a Python package for global and regional effect methods

Awesome Lists containing this project

README

          

# Effector



[![PyPI version](https://badge.fury.io/py/effector.svg?icon=si%3Apython)](https://badge.fury.io/py/effector)
![Execute Tests](https://github.com/givasile/effector/actions/workflows/run_tests.yml/badge.svg)
[![codecov](https://codecov.io/gh/givasile/effector/branch/main/graph/badge.svg)](https://codecov.io/gh/givasile/effector)
![Publish Documentation](https://github.com/givasile/effector/actions/workflows/publish_documentation.yml/badge.svg)
[![PyPI Downloads](https://static.pepy.tech/badge/effector)](https://pepy.tech/projects/effector)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)

---

`effector` an eXplainable AI package for **tabular data**. It:

- creates [global and regional](https://xai-effector.github.io/quickstart/global_and_regional_effects/) effect plots
- has a [simple API](https://xai-effector.github.io/quickstart/simple_api/) with smart defaults, but can become [flexible](https://xai-effector.github.io/quickstart/flexible_api/) if needed
- is model agnostic; can explain [any underlying ML model](https://xai-effector.github.io/)
- integrates easily with popular ML libraries, like [Scikit-Learn, Tensorflow and Pytorch](https://xai-effector.github.io/quickstart/simple_api/#__tabbed_2_2)
- is fast, for both [global](https://xai-effector.github.io/notebooks/guides/efficiency_global/) and [regional](https://xai-effector.github.io/notebooks/guides/efficiency_global/) methods
- provides a large collection of [global and regional effects methods](https://xai-effector.github.io/#supported-methods)

---

πŸ“– [Documentation](https://xai-effector.github.io/) | πŸ” [Intro to global and regional effects](https://xai-effector.github.io/quickstart/global_and_regional_effects/) | πŸ”§ [API](https://xai-effector.github.io/api/) | πŸ— [Examples](https://xai-effector.github.io/examples)

---

## Installation

Effector requires Python 3.10+:

```bash
pip install effector
```

Dependencies: `numpy`, `scipy`, `matplotlib`, `tqdm`, `shap`.

---

## Quickstart

### Train an ML model

```python
import effector
import keras
import numpy as np
import tensorflow as tf

np.random.seed(42)
tf.random.set_seed(42)

# Load dataset
bike_sharing = effector.datasets.BikeSharing(pcg_train=0.8)
X_train, Y_train = bike_sharing.x_train, bike_sharing.y_train
X_test, Y_test = bike_sharing.x_test, bike_sharing.y_test

# Define and train a neural network
model = keras.Sequential([
keras.layers.Dense(1024, activation="relu"),
keras.layers.Dense(512, activation="relu"),
keras.layers.Dense(256, activation="relu"),
keras.layers.Dense(1)
])
model.compile(optimizer="adam", loss="mse", metrics=["mae", keras.metrics.RootMeanSquaredError()])
model.fit(X_train, Y_train, batch_size=512, epochs=20, verbose=1)
model.evaluate(X_test, Y_test, verbose=1)
```

### Wrap it in a callable

```python
def predict(x):
return model(x).numpy().squeeze()
```

### Explain it with global effect plots

```python
# Initialize the Partial Dependence Plot (PDP) object
pdp = effector.PDP(
X_test, # Use the test set as background data
predict, # Prediction function
feature_names=bike_sharing.feature_names, # (optional) Feature names
target_name=bike_sharing.target_name # (optional) Target variable name
)

# Plot the effect of a feature
pdp.plot(
feature=3, # Select the 3rd feature (feature: hour)
nof_ice=200, # (optional) Number of Individual Conditional Expectation (ICE) curves to plot
scale_x={"mean": bike_sharing.x_test_mu[3], "std": bike_sharing.x_test_std[3]}, # (optional) Scale x-axis
scale_y={"mean": bike_sharing.y_test_mu, "std": bike_sharing.y_test_std}, # (optional) Scale y-axis
centering=True, # (optional) Center PDP and ICE curves
show_avg_output=True, # (optional) Display the average prediction
y_limits=[-200, 1000] # (optional) Set y-axis limits
)
```

![Feature effect plot](https://raw.githubusercontent.com/givasile/effector/main/docs/docs/notebooks/quickstart/readme_example_files/readme_example_3_0.png)

### Explain it with regional effect plots

```python
# Initialize the Regional Partial Dependence Plot (RegionalPDP)
r_pdp = effector.RegionalPDP(
X_test, # Test set data
predict, # Prediction function
feature_names=bike_sharing.feature_names, # Feature names
target_name=bike_sharing.target_name # Target variable name
)

# Summarize the subregions of the 3rd feature (temperature)
r_pdp.summary(
features=3, # Select the 3rd feature for the summary
scale_x_list=[ # scale each feature with mean and std
{"mean": bike_sharing.x_test_mu[i], "std": bike_sharing.x_test_std[i]}
for i in range(X_test.shape[1])
]
)
```

```
Feature 3 - Full partition tree:
🌳 Full Tree Structure:
───────────────────────
hr πŸ”Ή [id: 0 | heter: 0.43 | inst: 3476 | w: 1.00]
workingday = 0.00 πŸ”Ή [id: 1 | heter: 0.36 | inst: 1129 | w: 0.32]
temp ≀ 6.50 πŸ”Ή [id: 3 | heter: 0.17 | inst: 568 | w: 0.16]
temp > 6.50 πŸ”Ή [id: 4 | heter: 0.21 | inst: 561 | w: 0.16]
workingday β‰  0.00 πŸ”Ή [id: 2 | heter: 0.28 | inst: 2347 | w: 0.68]
temp ≀ 6.50 πŸ”Ή [id: 5 | heter: 0.19 | inst: 953 | w: 0.27]
temp > 6.50 πŸ”Ή [id: 6 | heter: 0.20 | inst: 1394 | w: 0.40]
--------------------------------------------------
Feature 3 - Statistics per tree level:
🌳 Tree Summary:
─────────────────
Level 0πŸ”Ήheter: 0.43
Level 1πŸ”Ήheter: 0.31 | πŸ”»0.12 (28.15%)
Level 2πŸ”Ήheter: 0.19 | πŸ”»0.11 (37.10%)
```

The summary of feature `hr` (hour) says that its effect on the output is highly dependent on the value of features:
- `workingday`, wheteher it is a workingday or not
- `temp`, what is the temperature the specific hour

Let's see how the effect changes on these subregions!

---
#### Is it workingday or not?

```python
# Plot regional effects after the first-level split (workingday vs non-workingday)
for node_idx in [1, 2]: # Iterate over the nodes of the first-level split
r_pdp.plot(
feature=3, # Feature 3 (temperature)
node_idx=node_idx, # Node index (1: workingday, 2: non-workingday)
nof_ice=200, # Number of ICE curves
scale_x_list=[ # Scale features by mean and std
{"mean": bike_sharing.x_test_mu[i], "std": bike_sharing.x_test_std[i]}
for i in range(X_test.shape[1])
],
scale_y={"mean": bike_sharing.y_test_mu, "std": bike_sharing.y_test_std}, # Scale the target
y_limits=[-200, 1000] # Set y-axis limits
)
```


Feature effect plot
Feature effect plot

#### Is it hot or cold?

```python
# Plot regional effects after second-level splits (workingday vs non-workingday and hot vs cold temperature)
for node_idx in [3, 4, 5, 6]: # Iterate over the nodes of the second-level splits
r_pdp.plot(
feature=3, # Feature 3 (temperature)
node_idx=node_idx, # Node index (hot/cold temperature and workingday/non-workingday)
nof_ice=200, # Number of ICE curves
scale_x_list=[ # Scale features by mean and std
{"mean": bike_sharing.x_test_mu[i], "std": bike_sharing.x_test_std[i]}
for i in range(X_test.shape[1])
],
scale_y={"mean": bike_sharing.y_test_mu, "std": bike_sharing.y_test_std}, # Scale target
y_limits=[-200, 1000] # Set y-axis limits
)

```


Feature effect plot
Feature effect plot


Feature effect plot
Feature effect plot

---

## Supported Methods

`effector` implements global and regional effect methods:

| Method | Global Effect | Regional Effect | Reference | ML model | Speed |
|---------|----------------|-----------------|-----------|-------------------|----------------------------------------------|
| PDP | `PDP` | `RegionalPDP` | [PDP](https://projecteuclid.org/euclid.aos/1013203451) | any | Fast for a small dataset |
| d-PDP | `DerPDP` | `RegionalDerPDP`| [d-PDP](https://arxiv.org/abs/1309.6392) | differentiable | Fast for a small dataset |
| ALE | `ALE` | `RegionalALE` | [ALE](https://academic.oup.com/jrsssb/article/82/4/1059/7056085) | any | Fast |
| RHALE | `RHALE` | `RegionalRHALE` | [RHALE](https://ebooks.iospress.nl/doi/10.3233/FAIA230354) | differentiable | Very fast |
| SHAP-DP | `ShapDP` | `RegionalShapDP`| [SHAP](https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions) | any | Fast for a small dataset and a light ML model |

---

## Method Selection Guide

From the runtime persepective there are three criterias:

- is the dataset `small` (N<10K) or `large` (N>10K instances) ?
- is the ML model `light` (runtime < 0.1s) or `heavy` (runtime > 0.1s) ?
- is the ML model `differentiable` or `non-differentiable` ?

Trust us and follow this guide:

- `light` + `small` + `differentiable` = `any([PDP, RHALE, ShapDP, ALE, DerPDP])`
- `light` + `small` + `non-differentiable`: `[PDP, ALE, ShapDP]`
- `heavy` + `small` + `differentiable` = `any([PDP, RHALE, ALE, DerPDP])`
- `heavy` + `small` + `non differentiable` = `any([PDP, ALE])`
- `big` + `not differentiable` = `ALE`
- `big` + `differentiable` = `RHALE`

---

## Citation

If you use `effector`, please cite it:

```bibtex
@misc{gkolemis2024effector,
title={effector: A Python package for regional explanations},
author={Vasilis Gkolemis et al.},
year={2024},
eprint={2404.02629},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```

---

## Spotlight on `effector`

### πŸ“š Featured Publications
- **Gkolemis, Vasilis, et al.**
*"Fast and Accurate Regional Effect Plots for Automated Tabular Data Analysis."*
[Proceedings of the VLDB Endowment](https://vldb.org/workshops/2024/proceedings/TaDA/TaDA.5.pdf) | ISSN 2150-8097

### 🎀 Talks & Presentations
- **LMU-IML Group Talk**
[Slides & Materials](https://github.com/givasile/effector-paper/tree/main/presentation-general) | [LMU-IML Research](https://www.slds.stat.uni-muenchen.de/research/explainable-ai.html)
- **AIDAPT Plenary Meeting**
[Deep dive into effector](https://github.com/givasile/presentation-aidapt-xai-effector/tree/main)
- **XAI World Conference 2024**
[Poster](https://github.com/givasile/effector-paper/blob/main/poster-general/main.pdf) | [Paper](https://github.com/givasile/effector-paper/blob/main/xai-conference-submission/effector_xai_conf.pdf)

### 🌍 Adoption & Collaborations
- **[AIDAPT Project](https://www.ai-dapt.eu/effector/)**
Leveraging `effector` for explainable AI solutions.

### πŸ” Additional Resources

- **Medium Post**
[Effector: An eXplainability Library for Global and Regional Effects](https://medium.com/@ntipakos/effector-bfe17206672c)

- **Courses & Lists**:
[IML Course @ LMU](https://slds-lmu.github.io/iml/)
[Awesome ML Interpretability](https://github.com/jphall663/awesome-machine-learning-interpretability)
[Awesome XAI](https://github.com/wangyongjie-ntu/Awesome-explainable-AI)
[Best of ML Python](https://github.com/ml-tooling/best-of-ml-python)

### πŸ“š Related Publications

Papers that have inspired `effector`:

- **REPID: Regional Effects in Predictive Models**
Herbinger et al., 2022 - [Link](https://proceedings.mlr.press/v151/herbinger22a)

- **Decomposing Global Feature Effects Based on Feature Interactions**
Herbinger et al., 2023 - [Link](https://arxiv.org/pdf/2306.00541.pdf)

- **RHALE: Robust Heterogeneity-Aware Effects**
Gkolemis Vasilis et al., 2023 - [Link](https://ebooks.iospress.nl/doi/10.3233/FAIA230354)

- **DALE: Decomposing Global Feature Effects**
Gkolemis Vasilis et al., 2023 - [Link](https://proceedings.mlr.press/v189/gkolemis23a/gkolemis23a.pdf)

- **Greedy Function Approximation: A Gradient Boosting Machine**
Friedman, 2001 - [Link](https://projecteuclid.org/euclid.aos/1013203451)

- **Visualizing Predictor Effects in Black-Box Models**
Apley, 2016 - [Link](https://arxiv.org/abs/1612.08468)

- **SHAP: A Unified Approach to Model Interpretation**
Lundberg & Lee, 2017 - [Link](https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions)

- **Regionally Additive Models: Explainable-by-design models minimizing feature interactions**
Gkolemis Vasilis et al., 2023 - [Link](https://arxiv.org/abs/2309.12215)

---

## License

`effector` is released under the [MIT License](https://github.com/givasile/effector/blob/main/LICENSE).

---

## Powered by:

- **[AIDAPT](https://www.ai-dapt.eu/)**

- **XMANAI**