Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/goodmanwen/pipeit

Syntax suger for python's functional programming as Unix pipes.
https://github.com/goodmanwen/pipeit

functional-programming pipe

Last synced: 2 months ago
JSON representation

Syntax suger for python's functional programming as Unix pipes.

Awesome Lists containing this project

README

        

# pipeit
[![fury](https://badge.fury.io/py/pipeit.svg)](https://badge.fury.io/py/pipeit)
[![licence](https://img.shields.io/github/license/GoodManWEN/pipeit)](https://github.com/GoodManWEN/pipeit/blob/master/LICENSE)
[![pyversions](https://img.shields.io/pypi/pyversions/pipeit.svg)](https://pypi.org/project/pipeit/)
[![Publish](https://github.com/GoodManWEN/pipeit/workflows/Publish/badge.svg)](https://github.com/GoodManWEN/pipeit/actions?query=workflow:Publish)
[![Build](https://github.com/GoodManWEN/pipeit/workflows/Build/badge.svg)](https://github.com/GoodManWEN/pipeit/actions?query=workflow:Build)

This is a super simple wrapper , let's use python functional programming like Unix pipe!

Inspired by [abersheeran/only-pipe](https://github.com/abersheeran/only-pipe) , [czheo/syntax_sugar_python](https://github.com/czheo/syntax_sugar_python) , [pipetools](https://pypi.org/project/pipetools/)

## Install

pip install pipeit

## Usage
- Statements start with `PIPE` and end with `END` **OR** you can even ellipsis them.
- There're only two objects(`PIPE` & `END`) and three types(`Filter` ,`Map` & `Reduce`) in namespace, so feel free to use `from pipeit import *`.
- Convert filter into tuple or capital the first letter, e.g. `map(lambda x:x + 1) => (map , lambda x:x + 1)` or `Map(lambda x:x + 1)` , however **DO NOT MIX USE THEM**.
- It'll be 10% ~ 20% faster using the original python functional way than using these wrappers.

v0.2.0 Update:
- Simple code timing means

v0.3.0 Update:
- Easier reading and writing operations

## Example
**Basic useage**:
```Python
>>> from pipit import PIPE , END , Map , Filter , Reduce

>>> data = PIPE | range(10) | (map , lambda x:x + 1) | (map , str) | list | END
>>> data
['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']

# (map , lambda x:x + 1) equals to Map(lambda x:x + 1)
>>> func = lambda x: PIPE | range(x) | Map(lambda x:x + 1) | Map(str) | list | END
>>> func(10)
['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']
```

Or you may want a more easy use.
```Python
>>> range(10) | Filter(lambda x:x<5) | list
[0, 1, 2, 3, 4]

>>> for _ in range(3) | Map(str):
print(repr(_))

'0'
'1'
'2'
```

**Code timer updated in version 0.2.0**, you can easily detect the execution time of code blocks or statements.
```Python
from pipeit import *
from functools import reduce

foo = list(range(100))
for _ in timeit(1e6): # which means loop for 1m times
bar = foo | Filter(lambda x: x%3) | Map(lambda x: 10*x) | Reduce(lambda x, y: x+y) | int

with timeit(): # a handwritten for loop is required under context manager mode
for _ in range(int(1e6)):
bar = reduce(lambda x, y: x+y, map(lambda x: 10*x, filter(lambda x: x%3, foo)))

# output:
# [line 5][approximate] time cost / loop: 9.8967234μs
# [line 8][exact] time cost: 7.0519098s
```

**Better IO functions are updated in version 0.3.0**. If you hate typing encoding="utf-8" over and over again, believe me, you'll love them.

Use simple `Read()`/`Write()`/`ReadB()`/`WriteB()` functions instead of the default practice of `with open()`. You can specify the encoding format, but they are specified as `utf-8` by default. Another advantage of doing this is that you no longer need to worry about accidentally emptying the file by not changing 'w' to 'r'.

```Python
from pipeit import *
import json

#
Write("a.txt", "Hello World!")
WriteB("b.json", "[1, 2, 3]".encode("utf-8"))
assert Read("a.txt") == "Hello World!"
assert ReadB("b.txt") == b"[1, 2, 3]"
```
Similarly, you can use pipes to send data to them, or pipes to receive data from them.
```Python
# OR
"[1, 2, 3]".encode("utf-8") | WriteB("b.json")

# another typical scenario is to cache data to hard disk and read it back again
html_a = "abc" # requests.get("https://a.example.com").text
html_b = "123" # ...
htmls = {"html_a": html_a, "html_b": html_b}
json.dumps(htmls) | Write("htmls.json")
#
htmls = Read("htmls.json") | json.loads
html_a, html_b = htmls.values()
```
`>>` and `|` operands are functionally identical while doing IO.
```Python
"Hello World!" >> Write("a.txt")
text = Read("a.txt") >> str
assert text == "Hello World!"
```