Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/google-research/pix2seq
Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
https://github.com/google-research/pix2seq
computer-vision deep-learning object-detection pix2seq tensorflow2 vision-language
Last synced: 7 days ago
JSON representation
Pix2Seq codebase: multi-tasks with generative modeling (autoregressive and diffusion)
- Host: GitHub
- URL: https://github.com/google-research/pix2seq
- Owner: google-research
- License: apache-2.0
- Created: 2022-03-08T17:36:28.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2023-11-07T08:25:57.000Z (about 1 year ago)
- Last Synced: 2025-01-08T08:02:02.559Z (14 days ago)
- Topics: computer-vision, deep-learning, object-detection, pix2seq, tensorflow2, vision-language
- Language: Jupyter Notebook
- Homepage:
- Size: 14.1 MB
- Stars: 888
- Watchers: 20
- Forks: 71
- Open Issues: 31
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
README
# Pix2Seq codebase: multi-tasks with generative modeling
This is the official implementation of Pix2Seq in Tensorflow 2 with efficient TPUs/GPUs support.
**The original Pix2Seq code aims to be a general framework that turns RGB pixels into semantically meaningful sequences**. We now extend it to be a generic codebase, with task-centric organization that supports different tasks as well as their combination, using generative modeling (**both autoregressive and diffusion models**, see below).
## (NEW!) FitTransformer (FIT)
We added (official) implementations of [FitTransformer (FIT)](https://arxiv.org/abs/2305.12689) (as an encoder, a diffusion decoder, or an autoregressive decoder) see architectures/transformers.py.
## (NEW!) Diffusion models
We added (official) implementations of diffusion models (such as Bit Diffusion, RIN, see references below) built on top of the original Pix2Seq codebase and they can be found in tasks/, models/, and architectures/.
Please note that we have not yet added proper documentations on training these models.
### Objects365 object detection pretrained checkpoints
Backbone | Total params (M) | Image size | Google cloud storage location
-------------: | ---------------: | ---------: | -----------:
ResNet-50 | 36.6 | 640x640 | [gs://pix2seq/obj365_pretrain/resnet_640x640_b256_s400k](https://console.cloud.google.com/storage/browser/pix2seq/obj365_pretrain/resnet_640x640_b256_s400k)
ResNet-50 (C4) | 84.7 | 640x640 | [gs://pix2seq/obj365_pretrain/resnetc_640x640_b256_s400k](https://console.cloud.google.com/storage/browser/pix2seq/obj365_pretrain/resnetc_640x640_b256_s400k)
ViT-B | 115.2 | 640x640 | [gs://pix2seq/obj365_pretrain/vit_b_640x640_b256_s400k](https://console.cloud.google.com/storage/browser/pix2seq/obj365_pretrain/vit_b_640x640_b256_s400k)
ViT-L | 341.2 | 640x640 | [gs://pix2seq/obj365_pretrain/vit_l_640x640_b256_s400k](https://console.cloud.google.com/storage/browser/pix2seq/obj365_pretrain/vit_l_640x640_b256_s400k)### COCO object detection fine-tuned checkpoints
Backbone | Total params (M) | Image size | COCO AP | Google cloud storage location
-------------: | ---------------: | ---------: | --------: | -----------:
ResNet-50 | 36.6 | 640x640 | 39.1 | [gs://pix2seq/coco_det_finetune/resnet_640x640](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/resnet_640x640)
ResNet-50 | 36.6 | 1024x1024 | 41.7 | [gs://pix2seq/coco_det_finetune/resnet_1024x1024](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/resnet_1024x1024)
ResNet-50 | 36.6 | 1333x1333 | 42.6 | [gs://pix2seq/coco_det_finetune/resnet_1333x1333](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/resnet_1333x1333)
ResNet-50 (C4) | 84.7 | 640x640 | 44.7 | [gs://pix2seq/coco_det_finetune/resnetc_640x640](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/resnetc_640x640)
ResNet-50 (C4) | 84.7 | 1024x1024 | 46.9 | [gs://pix2seq/coco_det_finetune/resnetc_1024x1024](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/resnetc_1024x1024)
ResNet-50 (C4) | 84.7 | 1333x1333 | 47.3 | [gs://pix2seq/coco_det_finetune/resnetc_1333x1333](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/resnetc_1333x1333)
ViT-B | 115.2 | 640x640 | 44.2 | [gs://pix2seq/coco_det_finetune/vit_b_640x640](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/vit_b_640x640)
ViT-B | 115.2 | 1024x1024 | 46.5 | [gs://pix2seq/coco_det_finetune/vit_b_1024x1024](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/vit_b_1024x1024)
ViT-B | 115.2 | 1333x1333 | 47.1 | [gs://pix2seq/coco_det_finetune/vit_b_1333x1333](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/vit_b_1333x1333)
ViT-L | 341.2 | 640x640 | 47.6 | [gs://pix2seq/coco_det_finetune/vit_l_640x640](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/vit_l_640x640)
ViT-L | 341.2 | 1024x1024 | 49.2 | [gs://pix2seq/coco_det_finetune/vit_l_1024x1024](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/vit_l_1024x1024)
ViT-L | 341.2 | 1333x1333 | 50.0 | [gs://pix2seq/coco_det_finetune/vit_l_1333x1333](https://console.cloud.google.com/storage/browser/pix2seq/coco_det_finetune/vit_l_1333x1333)### Multitask checkpoints
Jointly fine-tuned on coco object detection, instance segmentation, captioning and keypoint detection.Backbone | Total params (M) | Image size | COCO AP | Google cloud storage location
-------------: | ---------------: | ---------: | --------: | -----------:
ViT-B | 115.2 | 640x640 | 44.2 | [gs://pix2seq/multi_task/ckpt/vit_b_640x640](https://console.cloud.google.com/storage/browser/pix2seq/multi_task/ckpt/vit_b_640x640)
ViT-B | 115.2 | 1024x1024 | 46.5 | [gs://pix2seq/multi_task/ckpt/vit_b_1024x1024](https://console.cloud.google.com/storage/browser/pix2seq/multi_task/ckpt/vit_b_1024x1024)## Usage
### Colabs
See [colabs](colabs) for inference and fine-tuning demos. Give [it](https://colab.research.google.com/github/google-research/pix2seq/blob/master/colabs/pix2seq_inference_object_detection.ipynb) a try!
### Basic setup before running the code
The following setup is required before running the code.
```
git clone https://github.com/google-research/pix2seq.git
pip install -r requirements.txt
```Download COCO annotations from [gs://pix2seq/multi_task/data/coco/json](https://console.cloud.google.com/storage/browser/pix2seq/multi_task/data/coco/json) to `/tmp/coco_annotations` (dir can be updated in the configs).
```
annotations_dir=/tmp/coco_annotations
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/captions_train2017_eval_compatible.json $annotations_dir
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/captions_val2017_eval_compatible.json $annotations_dir
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/instances_train2017.json $annotations_dir
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/instances_val2017.json $annotations_dir
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/person_keypoints_train2017.json $annotations_dir
wget https://storage.googleapis.com/pix2seq/multi_task/data/coco/json/person_keypoints_val2017.json $annotations_dir
```(Optional) If accessing the pretrained checkpoints in Cloud is slowing down or blocking the start of training/eval, you can download them manually with following command `gsutil cp -r gs://cloud_folder local_folder`, and update `pretrained_ckpt` in the config file accordingly.
(Optional) If training fails at the start (due to NcclAllReduce error), try a different `cross_device_ops` for `tf.distribute.MirroredStrategy` in utils.py:build_strategy function.
### Instructions for training (fine-tuning) of object detection models.
Below is the instruction for starting a training job, where we've set up a configuration mainly for fine-tuning the objects365 pretrained models.
Step 1: check [config_det_finetune.py](configs/config_det_finetune.py) and update if necessary, such as `encoder_variant`, `image_size`.
Step 2: run `python3 run.py --mode=train --model_dir=/tmp/model_dir --config=configs/config_det_finetune.py --config.train.batch_size=32 --config.train.epochs=20 --config.optimization.learning_rate=3e-5`.
(Optional) Setup tensorboard for training curves with `tensorboard --logdir=/tmp/model_dir`. Note: eval on this drill fine-tuning run (with vit-b 640x640 and 20 epochs) should give ~43.5 AP. Exact configurations used to reproduce the COCO fine-tuning results can be found in gs://pix2seq/coco_det_finetune/...
(Optional) Set `--run_eagerly=True` for interactive debugging (which will be slower).
### Instructions for evaluation of object detection models.
Below is the instruction for starting an evaluation job, which monitors the specified directory and perform (continuous) evaluation of the latest and un-evaluated checkpoints. It can be started in parallel to or after the training.
Step 1: check [config_det_finetune.py](configs/config_det_finetune.py) and update if necessary, such as `encoder_variant`, `image_size`. Set `checkpoint_dir` if the checkpoints to evaluate are not in `model_dir` (e.g., for evaluating our provided fine-tuning checkpoints).
Step 2: run `python3 run.py --mode=eval --model_dir=/tmp/model_dir --config=configs/config_det_finetune.py --config.dataset.coco_annotations_dir=/path/to/annotations --config.eval.batch_size=40`.
(Optional) Setup tensorboard for eval curves and detection visualizations with `tensorboard --logdir=/tmp/model_dir`.
### Instructions for evaluation of multi-task models.
In `configs/config_multi_task.py` uncomment the line with `checkpoint_dir=get_multi_task_checkpoint_dir(...)`.
To evaluate for image size `1024x1024` update `image_size` in the config.#### Object detection
```
config=configs/config_multi_task.py:object_detection@coco/2017_object_detection,vit-b
model_dir=/tmp/pix2seq_eval_det
# Path to save the detected boxes for evaluating other tasks.
boxes_json_path=$model_dir/boxes.json
python3 run.py --config=$config --model_dir=$model_dir --mode=eval --config.task.eval_outputs_json_path=$boxes_json_path
```(Optional) In order to use the detected boxes generated in the previous step for eval of instance segmentation and keypoint detection, they need to be converted to tfrecords using the command below. Alternatively you can use the pre-processed tfrecords that we have provided.
```
box_tfrecords=/tmp/boxes
python3 data/scripts/merge_coco_json_tfrecord.py --tfrecord_path=gs://pix2seq/multi_task/data/coco/tfrecord/val* --annotation_path=$boxes_json_path --output_dir=$box_tfrecords
```#### Instance segmentation
```
config=configs/config_multi_task.py:instance_segmentation@coco/2017_instance_segmentation,vit-b
val_file_pattern=gs://pix2seq/multi_task/data/coco/det_boxes/vit_b_640x640/*.tfrecord
# val_file_pattern=$box_tfrecords/*.tfrecord
# Number of masks to aggregate. Reduce this for faster but lower quality eval.
num_samples=8
model_dir=/tmp/pix2seq_eval_ins
python3 run.py --config=$config --model_dir=$model_dir --mode=eval --config.dataset.val_file_pattern=$val_file_pattern --config.task.ensemble_num_samples=$num_samples
```#### Keypoint detection
```
config="configs/config_multi_task.py:keypoint_detection@coco/2017_keypoint_detection,vit-b"
val_file_pattern=gs://pix2seq/multi_task/data/coco/det_boxes/vit_b_640x640/*.tfrecord
# val_file_pattern=$box_tfrecords/*.tfrecord
model_dir=/tmp/pix2seq_eval_key
python3 run.py --config=$config --model_dir=$model_dir --mode=eval --config.dataset.val_file_pattern=$val_file_pattern
```#### Captioning
```
config=configs/config_multi_task.py:captioning@coco/2017_captioning,vit-b
model_dir=/tmp/pix2seq_eval_cap
python3 run.py --config=$config --model_dir=$model_dir --mode=eval
```For captioning, the generated captions are written to `$model_dir/coco_result_{step}_{uuid.uuid4()}.json`. Metrics can be computed using the official coco scripts.
Note: You can run eval on a subset of images by setting `--config.eval.steps`.
## Cite
[Pix2seq paper](https://arxiv.org/abs/2109.10852):
```
@article{chen2021pix2seq,
title={Pix2seq: A language modeling framework for object detection},
author={Chen, Ting and Saxena, Saurabh and Li, Lala and Fleet, David J and Hinton, Geoffrey},
journal={arXiv preprint arXiv:2109.10852},
year={2021}
}
```[Pix2seq multi-task paper](https://arxiv.org/abs/2206.07669):
```
@article{chen2022unified,
title={A Unified Sequence Interface for Vision Tasks},
author={Chen, Ting and Saxena, Saurabh and Li, Lala and Lin, Tsung-Yi and Fleet, David J. and Hinton, Geoffrey},
journal={arXiv preprint arXiv:2206.07669},
year={2022}
}
```[Pix2seq-D paper](https://arxiv.org/abs/2210.06366):
```
@article{chen2022unified,
title={A generalist framework for panoptic segmentation of images and videos},
author={Chen, Ting and Li, Lala and Saxena, Saurabh and Hinton, Geoffrey and Fleet, David J.},
journal={arXiv preprint arXiv:2210.06366},
year={2022}
}
```[Bit Diffusion paper](https://arxiv.org/abs/2208.04202):
```
@article{chen2022analog,
title={Analog bits: Generating discrete data using diffusion models with self-conditioning},
author={Chen, Ting and Zhang, Ruixiang and Hinton, Geoffrey},
journal={arXiv preprint arXiv:2208.04202},
year={2022}
}
```[RIN Diffusion paper](https://arxiv.org/abs/2212.11972):
```
@article{jabri2022scalable,
title={Scalable Adaptive Computation for Iterative Generation},
author={Jabri, Allan and Fleet, David J. and Chen, Ting},
journal={arXiv preprint arXiv:2212.11972},
year={2022}
}
```[Diffusion noise scheduling paper](https://arxiv.org/abs/2301.10972):
```
@article{chen2023on,
title={On the Importance of Noise Scheduling for Diffusion Models},
author={Chen, Ting},
journal={arXiv preprint arXiv:2301.10972},
year={2023}
}
```[FitTransformer (FIT) paper](https://arxiv.org/abs/2305.12689):
```
@article{chen2023fit,
title={FIT: Far-reaching Interleaved Transformers},
author={Chen, Ting and Li, Lala},
journal={arXiv preprint arXiv:2305.12689},
year={2023}
}
```## Disclaimer
This is not an officially supported Google product.