Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/gordicaleksa/serbian-llm-eval

Serbian LLM Eval.
https://github.com/gordicaleksa/serbian-llm-eval

bosnian croatian eval llm serbian

Last synced: about 2 months ago
JSON representation

Serbian LLM Eval.

Awesome Lists containing this project

README

        

# Serbian LLM eval 🇷🇸

Note: it can likely also be used for other HBS languages (Croatian, Bosnian, Montenegrin) - support for these languages is on my roadmap (see [future work](#future-work)).

## What is currently covered:
* Common sense reasoning: `Hellaswag`, `Winogrande`, `PIQA`, `OpenbookQA`, `ARC-Easy`, `ARC-Challenge`
* World knowledge: `NaturalQuestions`, `TriviaQA`
* Reading comprehension: `BoolQ`

You can find the Serbian LLM eval dataset [on HuggingFace](https://huggingface.co/datasets/gordicaleksa/serbian-llm-eval-v1). For more details on how the dataset was built see [this technical report](https://wandb.ai/gordicaleksa/serbian_llm_eval/reports/First-Serbian-LLM-eval---Vmlldzo2MjgwMDA5) on Weights & Biases. The branch [serb_eval_translate](https://github.com/gordicaleksa/lm-evaluation-harness-serbian/tree/serb_eval_translate) was used to do machine translation, while [serb_eval_refine](https://github.com/gordicaleksa/lm-evaluation-harness-serbian/tree/serb_eval_refine) was used to do further refinement using GPT-4.

Please email me at gordicaleksa at gmail com in case you're willing to sponsor the projects I'm working on.

You will get the credits and eternal glory. :)

In Serbian:
```
I na srpskom, ukoliko ste voljni da finansijski podržite ovaj poduhvat korišćenja ChatGPT da se dobiju kvalitetniji podaci, i koji je od nacionalnog/regionalnog interesa, moj email je gordicaleksa at gmail com. Dobićete priznanje na ovom projektu da ste sponzor (i postaćete deo istorije). :)

Dalje ovaj projekat će pomoći da se pokrene lokalni large language model ekoksistem.
``````

# Run the evals

### Step 1. Create Python environment

```
git clone https://github.com/gordicaleksa/lm-evaluation-harness-serbian
cd lm-evaluation-harness-serbian
pip install -e .
```

Currently you might need to manually install also the following packages (do pip install): `sentencepiece`, `protobuf`, and one more (submit PR if you hit this).

### Step 2. Tweak the launch json and run

`--model_args` <- any name from HuggingFace or a path to HuggingFace compatible checkpoint will work

`--tasks` <- pick any subset of these `arc_challenge,arc_easy,boolq,hellaswag,openbookqa,piqa,winogrande,nq_open,triviaqa`

`--num_fewshot` <- set the number of shots, should be 0 for all tasks except for `nq_open` and `triviaqa` (these should be run in 5-shot manner if you want to compare against Mistral 7B)

`--batch_size` <- depending on your available VRAM set this as high as possible to get the max speed up

## Future work:

* Cover popular aggregated results benchmarks: `MMLU`, `BBH`, `AGI Eval` and math: `GSM8K`, `MATH`
* Explicit support for other HBS languages.

# Sponsors

Thanks to all of our sponsor(s) for donating for the [yugoGPT](https://www.linkedin.com/posts/aleksagordic_first-ever-7-billion-parameter-hbs-llm-croatian-activity-7133414124553711616-Ep5J) (first 7B HBS LLM) & Serbian LLM eval projects.

yugoGPT base model will soon be open-source under permissive Apache 2.0 license.

## Platinum sponsors
* Ivan (anon)

## Gold sponsors
* **qq** (anon)
* [**Adam Sofronijevic**](https://www.linkedin.com/in/adam-sofronijevic-685b911/)
* [**Yanado**](https://yanado.com/)
* [**Mitar Perovic**](https://www.linkedin.com/in/perovicmitar/)
* [**Nikola Ivancevic**](https://www.linkedin.com/in/nivancevic/)
* **Rational Development DOO**
* [**Ivan**](https://www.linkedin.com/in/ivan-kokic-258262175/) i [**Natalija Kokić**](https://www.linkedin.com/in/natalija-kokic-19a458131/)

## Silver sponsors
- [**psk.rs**](https://psk.rs/)
- [**OmniStreak**](https://omnistreak.com/)
- [**Luka Važić**](https://www.linkedin.com/in/vazic/)
- [**Miloš Durković**](https://www.linkedin.com/in/milo%C5%A1-d-684b99188/)
- [**Marjan Radeski**](https://www.linkedin.com/in/marjanradeski/)
- **Marjan Stankovic**
- [**Nikola Stojiljkovic**](https://www.linkedin.com/in/nikola-stojiljkovic-10469239/)
- [**Mihailo Tomić**](https://www.linkedin.com/in/mihailotomic/)
- [**Bojan Jevtic**](https://www.linkedin.com/in/bojanjevtic/)
- [**Jelena Jovanović**](https://www.linkedin.com/in/eldumo/)
- [**Nenad Davidović**](https://www.linkedin.com/in/nenad-davidovic-662ab749/)
- [**Mika Tasich**](https://www.linkedin.com/in/mikatasich/)
- [**TRENCH-NS**](https://www.linkedin.com/in/milorad-vukadinovic-64639926/)
- [**Nemanja Grujičić**](https://twitter.com/nemanjagrujicic)
- [**Mladen FerneĹľir**](https://www.linkedin.com/in/mladen-fernezir/)
- [**tim011**](https://knjigovodja.in.rs/sh)

**Also a big thank you to the following individuals:**
- [**Slobodan Marković**](https://www.linkedin.com/in/smarkovic/) - for spreading the word! :)
- [**Aleksander Segedi**](https://www.linkedin.com/in/aleksander-segedi-08430936/) - for help around bookkeeping

## Credits

A huge thank you to the following technical contributors who helped translate the evals from English into Serbian:
* [Vera Prohaska](https://vtwoptwo.com/)
* [Chu Kin Chan](www.linkedin.com/in/roy-ck-chan)
* [Joe Makepeace](https://www.linkedin.com/in/joe-makepeace-a872a1183/)
* [Toby Farmer](https://www.linkedin.com/in/tobyfarmer/)
* [Malvi Bid](https://www.linkedin.com/in/malvibid/)
* [Raphael Vienne](https://www.linkedin.com/in/raphael-vienne/)
* [Nenad Aksentijevic](https://www.linkedin.com/in/nenad-aksentijevic-21629a1b6)
* [Isaac Nicolas](https://www.linkedin.com/in/isaacnicolas/)
* [Brian Pulfer](https://www.brianpulfer.ch/)
* [Aldin Cimpo](https://www.linkedin.com/in/aldin-c-b26334189/)

## License

Apache 2.0

## Citation

```
@article{serbian-llm-eval,
author = "Gordić Aleksa",
title = "Serbian LLM Eval",
year = "2023"
howpublished = {\url{https://huggingface.co/datasets/gordicaleksa/serbian-llm-eval-v1}},
}
```