Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gosha20777/yolo-v3-keras
Keras implimettation of YOLOv3
https://github.com/gosha20777/yolo-v3-keras
cv keras neural-network object python yolov3
Last synced: 3 days ago
JSON representation
Keras implimettation of YOLOv3
- Host: GitHub
- URL: https://github.com/gosha20777/yolo-v3-keras
- Owner: gosha20777
- License: mit
- Created: 2019-08-01T18:44:04.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-08-01T21:40:00.000Z (over 5 years ago)
- Last Synced: 2024-11-22T05:34:02.884Z (2 months ago)
- Topics: cv, keras, neural-network, object, python, yolov3
- Language: Python
- Size: 28.3 KB
- Stars: 3
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# yolo-v3-keras
Keras implementation of YOLO v3 https://pjreddie.com/media/files/papers/YOLOv3.pdf.## Pretrained model
You can download offitial pascal pretrained model [here](https://github.com/gosha20777/yolo-v3-keras)## Ussage
To make prediction use this command:```
git clone https://github.com/gosha20777/yolo-v3-keras.git
cd yolo-v3-keras
wget -O voc.h5 https://github.com/gosha20777/yolo-v3-keras/releases/download/0.1.0/voc.h5
python predict.py -c config.json -i /path/to/image_dir -o /patch/to/output_dir
```## Training
1. Load the VOC training set http://host.robots.ox.ac.uk/pascal/VOC/voc2012/.2. Edit `config.json` file and chnge `train_image_folder`, `train_annot_folder`, `valid_image_folder` and `val_annot_folder` patches.
3. Run:
`python train.py -c config.json`## Training on your own data
1. Create your VOC-style dataset. (You can do it with [labelImg](https://github.com/tzutalin/labelImg) program).
2. Edit classes at `config.json`.
3. Train it!
*I highly recommend you to use default pretrained weights and fine-tune it*