An open API service indexing awesome lists of open source software.

https://github.com/goutamhegde002/ml-and-data-science-projects

Few simple ML and Data Science related Projects
https://github.com/goutamhegde002/ml-and-data-science-projects

acidity-prediction data-science data-science-examples diabetes-prediction digit-classification housing-price-prediction instagram-analytics iris-classification jupyter-no machine-learning machine-learning-algorithms named-entity-recognition ner penguin-classification power-consumption-analysis predictive-analysis python-projects text-classification titanic-survival-prediction wine-quality

Last synced: 8 months ago
JSON representation

Few simple ML and Data Science related Projects

Awesome Lists containing this project

README

          

# Data Science Projects

This repository contains various data science projects, each focusing on different aspects of machine learning and data analysis. Below is a brief overview of each notebook and how to get started.

## Projects

### 1. **Acidity Prediction**
- **Description**: Predicts acidity levels in wine based on various features using machine learning algorithms.
- **File**: `Acidity_Prediction.ipynb`

### 2. **California Housing Price Prediction**
- **Description**: Predicts housing prices in California using a dataset and regression models.
- **File**: `California_Housing_Price_Prediction.ipynb`

### 3. **Diabetes Prediction**
- **Description**: Predicts the likelihood of diabetes based on patient data using classification algorithms.
- **File**: `Diabetes_Prediction.ipynb`

### 4. **Digit Classification**
- **Description**: Classifies handwritten digits from the MNIST dataset using machine learning models.
- **File**: `Digit_Classification.ipynb`

### 5. **Instagram User Analytics**
- **Description**: Analyzes Instagram user data to gain insights into user behavior and engagement.
- **File**: `Instagram_User_Analytics.ipynb`

### 6. **Iris Classification**
- **Description**: Classifies iris flower species based on petal and sepal measurements using classification techniques.
- **File**: `Iris_Classification.ipynb`

### 7. **Named Entity Recognition (NER) with NLTK**
- **Description**: Performs Named Entity Recognition on text data using NLTK.
- **File**: `Named_Entity_Recognition_(NER)_with_NLTK.ipynb`

### 8. **Penguin Classification**
- **Description**: Classifies penguin species based on various features using machine learning algorithms.
- **File**: `Penguin_Classification.ipynb`

### 9. **Power Consumptions**
- **Description**: Analyzes power consumption data to identify trends and make predictions.
- **File**: `Power_Consumptions.ipynb`

### 10. **Titanic Survival Prediction**
- **Description**: Predicts survival chances of passengers on the Titanic using classification models.
- **File**: `Titanic.ipynb`

### 11. **Wine Quality Classification**
- **Description**: Classifies wine quality based on chemical properties using machine learning algorithms.
- **File**: `Wine_Quality_Classification.ipynb`

### 12. **Text Classification for News Articles**
- **Description**: Classifies news articles into different categories using text classification techniques.
- **File**: `text_classification_for_news_articles.ipynb`

## Getting Started

1. **Clone the Repository**:
```bash
git clone https://github.com/yourusername/repositoryname.git
```
2. **Navigate to the Project Directory:**

```
cd repositoryname
```

3. **Install Required Packages: **

You may need to install the necessary Python libraries.

You can do this using pip:

``` bash
pip install -r requirements.txt
```

4. **Run a Jupyter Notebook:**

Start Jupyter Notebook and open the desired notebook file:

```
jupyter notebook
```

## License

This repository is licensed under the MIT License. See the LICENSE file for more information.

## Contributing

If you would like to contribute to this repository, please open an issue or submit a pull request.

## Contact

For any questions or feedback, please contact goutamhegde2000g@gmail.com.