Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gperdrizet/gcsb_mle
Google Cloud Skills Boost Machine Learning Engineer Learning Path
https://github.com/gperdrizet/gcsb_mle
Last synced: 8 days ago
JSON representation
Google Cloud Skills Boost Machine Learning Engineer Learning Path
- Host: GitHub
- URL: https://github.com/gperdrizet/gcsb_mle
- Owner: gperdrizet
- Created: 2024-10-23T12:13:10.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2025-01-09T17:09:11.000Z (8 days ago)
- Last Synced: 2025-01-09T18:18:57.513Z (8 days ago)
- Size: 760 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 16
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# GCSB_MLE
This repository will be used to track and document my progress through the [Google Cloud Skills Boost Machine Learning Engineer Learning Path](https://www.cloudskillsboost.google/paths/17). Each course in the learning path listed below is associated with an issue and a GitHub project is used to track overall progress. Work for each section is completed on a branch which is merged and closed upon completion.
**Note:** The section numbering below follows that given in the [study guide](https://github.com/gperdrizet/GCSB_MLE/blob/main/course_introduction_materials/machine_learning_engineer_study_guide.pdf) where the first two introductory sections listed on the [learning path page](https://www.cloudskillsboost.google/paths/17) are not included in the numbering.
## Learning path outline
### [Course 01. Introduction to AI and Machine Learning on Google Cloud (8 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/593)
- ~~**Module 1**: AI Foundations on Google Cloud~~
- ~~**Module 2**: AI Development on Google Cloud~~
- ~~**Module 3**: ML Workflow and Vertex AI~~
- ~~**Module 4**: Generative AI on Google Cloud~~### [Course 02. Prepare Data for ML APIs on Google Cloud (6.5 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/631)
- ~~**Lab 1**: Vertex AI: Qwik Start~~
- ~~**Lab 2**: Dataprep: Qwik Start~~
- ~~**Lab 3**: Dataflow: Qwik Start - Templates~~
- ~~**Lab 4**: Dataflow: Qwik Start - Python~~
- ~~**Lab 5**: Dataproc: Qwik Start - Console~~
- ~~**Lab 6**: Dataproc: Qwik Start - Command Line~~
- ~~**Lab 7**: Cloud Natural Language API: Qwik Start~~
- ~~**Lab 8**: Speech-to-Text API: Qwik Start~~
- ~~**Lab 9**: Video Intelligence: Qwik Start~~
- ~~**Lab 10**: Prepare Data for ML APIs on Google Cloud: Challenge Lab~~### [Course 03. Working with Notebooks in Vertex AI (0.75 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/923)
**Mini-course**: 8 lessons
- ~~**Lesson 1**: Working with Notebooks in Vertex AI~~
- ~~**Lesson 2**: Vertex AI Notebook Solutions~~
- ~~**Lesson 3**: Vertex AI Colab Enterprise notebooks~~
- ~~**Lesson 4**: Vertex AI Workbench instance notebooks~~
- ~~**Summary**~~
- ~~**Quiz**: Working with Notebooks in Vertex AI~~
- ~~**Lab 1**: Exploratory Data Analysis using Bigquery and Colab Enterprise (2 hrs)~~
- ~~**Lab 2**: Exploratory Data Analysis using Bigquery and Workbench Instances (2 hrs)~~### [Course 04. Create ML Models with BigQuery ML (5.5 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/626)
- **Lab 1**: ~~Getting Started with BigQuery ML~~
- **Lab 2**: ~~Predict Visitor Purchases with a Classification Model in BigQuery ML~~
- **Lab 3**: ~~Predict Taxi Fare with a BigQuery ML Forecasting Model~~
- **Lab 4**: ~~Bracketology with Google Machine Learning~~
- **Lab 5**: ~~Create ML Models with BigQuery ML: Challenge Lab~~### [Course 05. Engineer Data for Predictive Modeling with BigQuery ML (4.25 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/627)
- **Lab 1**: Creating a Data Transformation Pipeline with Cloud Dataprep
- **Lab 2**: ETL Processing on Google Cloud Using Dataflow and BigQuery (Python)
- **Lab 3**: Predict Visitor Purchases with a Classification Model in BigQuery ML
- **Lab 4**: Engineer Data for Predictive Modeling with BigQuery ML: Challenge Lab### [Course 06. Feature Engineering (24 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/11)
- **Module 1**: Introduction to Vertex AI Feature Store
- **Module 2**: Raw Data to Features
- **Module 3**: Feature Engineering
- **Module 4**: Preprocessing and Feature Creation
- **Module 5**: Feature Crosses: TensorFlow Playground
- **Module 6**: Introduction to TensorFlow Transform### [Course 07. Build, Train and Deploy ML Models with Keras on Google Cloud (15.5 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/12)
- **Module 1**: Introduction to the TensorFlow Ecosystem
- **Module 2**: Design and Build an Input Data Pipeline
- **Module 3**: Building Neural Networks with the TensorFlow and Keras API
- **Module 4**: Training at Scale with Vertex AI### [Course 08. Production Machine Learning Systems (16 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/17)
- **Module 1**: Architecting Production ML System
- **Module 2**: Designing Adaptable ML System Designing High-Performance ML Systems
- **Module 3**: Designing High-Performance ML Systems
- **Module 4**: Hybrid ML Systems
- **Module 5**: Troubleshooting ML Production Systems### [Course 09. Machine Learning Operations (MLOps): Getting Started (8 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/158)
- **Module 1**: Employing Machine Learning Operations
- **Module 2**: Vertex AI and MLOps on Vertex AI### [Course 10. Machine Learning Operations (MLOps) with Vertex AI: Manage Features (8 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/584)
- **Module 1**: Introduction to Vertex AI Feature Store
- **Module 2**: An In-Depth Look### [Course 11. Introduction to Generative AI (0.75 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/536)
- **Mini-course**: 1 lesson
### [Course 12. Introduction to Large Language Models (0.5 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/539)
- **Mini-course**: 1 lesson
### [Course 13. Machine Learning Operations (MLOps) for Generative AI (0.5 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/927)
- **Mini Course**: 5 lessons
### [Course 14. Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation (2.5 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/1080)
- **Module 1**: Introduction to Model Evaluation
- **Module 2**: Model Evaluation for Generative AI### [Course 15. ML Pipelines on Google Cloud (2.25 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/191)
- **Module 1**: Introduction to TFX Pipelines
- **Module 2**: Pipeline Orchestration with TFX
- **Module 3**: Custom Components and CI/CD for TFX Pipelines
- **Module 4**: ML Metadata with TFX
- **Module 5**: Continuous Training with Multiple SDKs, KubeFlow & AI Platform Pipelines
- **Module 6**: Continuous Training with Cloud Composer
- **Module 7**: ML Pipelines with MLflow### [Course 16. Build and Deploy Machine Learning Solutions on Vertex AI (8.25 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/684)
- **Lab 1**: Vertex AI: Qwik Start
- **Lab 2**: Identify Damaged Car Parts with Vertex AutoML Vision
- **Lab 3**: Deploy a BigQuery ML Customer Churn Classifier to Vertex AI for Online Predictions
- **Lab 4**: Vertex Pipelines: Qwik Start
- **Lab 5**: Build and Deploy Machine Learning Solutions with Vertex AI: Challenge Lab### [Course 17. Create Generative AI Applications on Google Cloud (4 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/1120)
- **Module 1**: Generative AI Applications
- **Module 2**: Prompts
- **Module 3**: Retrieval Augmented Generation (RAG)### [Course 18. Responsible AI for Developers: Fairness and Bias (4 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/985)
- **Module 1**: AI Interpretability and Transparency
- **Module 2**: Modernizing Infrastructure in the Cloud### [Course 19. Responsible AI for Developers: Interpretability and Transparency (3 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/989)
- **Module 1**: AI Interpretability and Transparency
- **Module 2**: Modernizing Infrastructure in the Cloud### [Course 20. Responsible AI for Developers: Privacy and Safety (5 hours)](https://www.cloudskillsboost.google/paths/17/course_templates/1036)
- **Module 1**: AI Privacy
- **Module 2**: AI Safety