Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/graphql-python/graphene-tornado
https://github.com/graphql-python/graphene-tornado
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/graphql-python/graphene-tornado
- Owner: graphql-python
- License: mit
- Created: 2017-09-23T20:22:08.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2024-03-20T15:32:52.000Z (10 months ago)
- Last Synced: 2024-12-06T23:32:12.082Z (about 1 month ago)
- Language: Python
- Size: 198 KB
- Stars: 52
- Watchers: 32
- Forks: 14
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
- awesome-starred - graphql-python/graphene-tornado - (others)
README
[![Build Status](https://travis-ci.org/graphql-python/graphene-tornado.svg?branch=master)](https://travis-ci.org/graphql-python/graphene-tornado)
[![Coverage Status](https://coveralls.io/repos/github/graphql-python/graphene-tornado/badge.svg?branch=master)](https://coveralls.io/github/graphql-python/graphene-tornado?branch=master)# graphene-tornado
A project for running [Graphene](http://graphene-python.org/) on top of [Tornado](http://www.tornadoweb.org/) for Python 3. The codebase was originally a port of [graphene-django](https://github.com/graphql-python/graphene-django).
# Getting started
Create a Tornado application and add the GraphQL handlers:
```python
import tornado.web
from tornado.ioloop import IOLoopfrom graphene_tornado.schema import schema
from graphene_tornado.tornado_graphql_handler import TornadoGraphQLHandlerclass ExampleApplication(tornado.web.Application):
def __init__(self):
handlers = [
(r'/graphql', TornadoGraphQLHandler, dict(graphiql=True, schema=schema)),
(r'/graphql/batch', TornadoGraphQLHandler, dict(graphiql=True, schema=schema, batch=True)),
(r'/graphql/graphiql', TornadoGraphQLHandler, dict(graphiql=True, schema=schema))
]
tornado.web.Application.__init__(self, handlers)if __name__ == '__main__':
app = ExampleApplication()
app.listen(5000)
IOLoop.instance().start()
```When writing your resolvers, decorate them with either Tornado's `@coroutine` decorator for Python 2.7:
```python
@gen.coroutine
def resolve_foo(self, info):
foo = yield db.get_foo()
raise Return(foo)
```Or use the `async` / `await` pattern in Python 3:
```python
async def resolve_foo(self, info):
foo = await db.get_foo()
return foo
```# Extensions
`graphene-tornado` supports server-side extensions like [Apollo Server](https://www.apollographql.com/docs/apollo-server/features/metrics). The extensions go a step further than Graphene middleware to allow for finer grained interception of request processing. The canonical use case is for tracing; see `graphene_tornado/apollo_engine_reporting/engine_agent.py` for an example.
Extensions are experimental and most likely will change in future releases as they should be extensions provided by
`graphql-server-core`.## Apollo Engine Reporting
You can integrate with Apollo Engine Reporting by enabling the extension.
```console
$ pip install graphene-tornado[apollo-engine-reporting]
``````python
engine_options = EngineReportingOptions()
agent = EngineReportingAgent(engine_options, generate_schema_hash(schema))class ExampleEngineReportingApplication(tornado.web.Application):
def __init__(self):
engine_extension = lambda: EngineReportingExtension(engine_options, agent.add_trace)
handlers = [
(r'/graphql', TornadoGraphQLHandler, dict(graphiql=True, schema=schema, extensions=[engine_extension])),
(r'/graphql/batch', TornadoGraphQLHandler, dict(graphiql=True, schema=schema, batch=True,
extensions=[engine_extension])),
(r'/graphql/graphiql', TornadoGraphQLHandler, dict(graphiql=True, schema=schema,
extensions=[engine_extension]))
]
tornado.web.Application.__init__(self, handlers)
``````console
ENGINE_API_KEY= python -m examples.apollo_engine_reporting_example
```Then visit `http://localhost:5000/graphql/graphiql`, make some queries, and view the results in Apollo Engine.
## OpenCensus
You can also use [OpenCensus](https://github.com/census-instrumentation/opencensus-python) for tracing:
```console
$ pip install graphene-tornado[opencensus]
``````python
class ExampleOpenCensusApplication(tornado.web.Application):def __init__(self):
extension = lambda: OpenCensusExtension()
handlers = [
(r'/graphql', TornadoGraphQLHandler, dict(graphiql=True, schema=schema, extensions=[extension])),
(r'/graphql/batch', TornadoGraphQLHandler, dict(graphiql=True, schema=schema, batch=True)),
]
tornado.web.Application.__init__(self, handlers)
```