https://github.com/graykode/modelsummary
All Model summary in PyTorch similar to `model.summary()` in Keras
https://github.com/graykode/modelsummary
keras python pytorch summary
Last synced: 5 months ago
JSON representation
All Model summary in PyTorch similar to `model.summary()` in Keras
- Host: GitHub
- URL: https://github.com/graykode/modelsummary
- Owner: graykode
- License: mit
- Created: 2019-03-04T13:01:36.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-04-24T09:01:32.000Z (about 6 years ago)
- Last Synced: 2024-12-11T04:32:15.987Z (6 months ago)
- Topics: keras, python, pytorch, summary
- Language: Python
- Homepage: https://www.reddit.com/r/MachineLearning/comments/ax83h7/p_modelsummary_pip_project_in_pytorch/
- Size: 29.3 KB
- Stars: 87
- Watchers: 7
- Forks: 26
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## modelsummary (Pytorch Model summary)
> Keras style model.summary() in PyTorch, [torchsummary](https://github.com/sksq96/pytorch-summary)
This is Pytorch library for visualization Improved tool of [torchsummary](https://github.com/sksq96/pytorch-summary) and [torchsummaryX](https://github.com/nmhkahn/torchsummaryX). I was inspired by [torchsummary](https://github.com/sksq96/pytorch-summary) and I written down code which i referred to. **It is not care with number of Input parameter!**
```python
import torch
import torch.nn as nn
import torch.nn.functional as Ffrom modelsummary import summary
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)# show input shape
summary(Net(), torch.zeros((1, 1, 28, 28)), show_input=True)# show output shape
summary(Net(), torch.zeros((1, 1, 28, 28)), show_input=False)
``````
-----------------------------------------------------------------------
Layer (type) Input Shape Param #
=======================================================================
Conv2d-1 [-1, 1, 28, 28] 260
Conv2d-2 [-1, 10, 12, 12] 5,020
Dropout2d-3 [-1, 20, 8, 8] 0
Linear-4 [-1, 320] 16,050
Linear-5 [-1, 50] 510
=======================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
----------------------------------------------------------------------------------------------------------------------------------------------
Layer (type) Output Shape Param #
=======================================================================
Conv2d-1 [-1, 10, 24, 24] 260
Conv2d-2 [-1, 20, 8, 8] 5,020
Dropout2d-3 [-1, 20, 8, 8] 0
Linear-4 [-1, 50] 16,050
Linear-5 [-1, 10] 510
=======================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
-----------------------------------------------------------------------
```## Quick Start
Just download with pip `modelsummary`
`pip install modelsummary` and `from modelsummary import summary`
You can use this library like this. If you see more detail, Please see example code.
```
from modelsummary import summarymodel = your_model_name()
# show input shape
summary(model, (input tensor you want), show_input=True)# show output shape
summary(model, (input tensor you want), show_input=False)# show hierarchical struct
summary(model, (input tensor you want), show_hierarchical=True)
```summary function has this parameter options`def summary(model, *inputs, batch_size=-1, show_input=True, show_hierarchical=False)`
#### Options
- model : your model class
- *input : your input tensor **datas** (Asterisk)
- batch_size : `-1` is same with tensor `None`
- show_input : show input shape data, **if this parameter is False, it will show output shape** **default : True**
- show_hierarchical : show hierarchical data structure, **default : False**## Result
Run example using Transformer Model in [Attention is all you need paper(2017)](https://arxiv.org/abs/1706.03762)
1) showing input shape
```
# show input shape
summary(model, enc_inputs, dec_inputs, show_input=True)-----------------------------------------------------------------------
Layer (type) Input Shape Param #
=======================================================================
Encoder-1 [-1, 5] 0
Embedding-2 [-1, 5] 3,072
Embedding-3 [-1, 5] 3,072
EncoderLayer-4 [-1, 5, 512] 0
MultiHeadAttention-5 [-1, 5, 512] 0
Linear-6 [-1, 5, 512] 262,656
Linear-7 [-1, 5, 512] 262,656
Linear-8 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-9 [-1, 5, 512] 0
Conv1d-10 [-1, 512, 5] 1,050,624
Conv1d-11 [-1, 2048, 5] 1,049,088
EncoderLayer-12 [-1, 5, 512] 0
MultiHeadAttention-13 [-1, 5, 512] 0
Linear-14 [-1, 5, 512] 262,656
Linear-15 [-1, 5, 512] 262,656
Linear-16 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-17 [-1, 5, 512] 0
Conv1d-18 [-1, 512, 5] 1,050,624
Conv1d-19 [-1, 2048, 5] 1,049,088
EncoderLayer-20 [-1, 5, 512] 0
MultiHeadAttention-21 [-1, 5, 512] 0
Linear-22 [-1, 5, 512] 262,656
Linear-23 [-1, 5, 512] 262,656
Linear-24 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-25 [-1, 5, 512] 0
Conv1d-26 [-1, 512, 5] 1,050,624
Conv1d-27 [-1, 2048, 5] 1,049,088
EncoderLayer-28 [-1, 5, 512] 0
MultiHeadAttention-29 [-1, 5, 512] 0
Linear-30 [-1, 5, 512] 262,656
Linear-31 [-1, 5, 512] 262,656
Linear-32 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-33 [-1, 5, 512] 0
Conv1d-34 [-1, 512, 5] 1,050,624
Conv1d-35 [-1, 2048, 5] 1,049,088
EncoderLayer-36 [-1, 5, 512] 0
MultiHeadAttention-37 [-1, 5, 512] 0
Linear-38 [-1, 5, 512] 262,656
Linear-39 [-1, 5, 512] 262,656
Linear-40 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-41 [-1, 5, 512] 0
Conv1d-42 [-1, 512, 5] 1,050,624
Conv1d-43 [-1, 2048, 5] 1,049,088
EncoderLayer-44 [-1, 5, 512] 0
MultiHeadAttention-45 [-1, 5, 512] 0
Linear-46 [-1, 5, 512] 262,656
Linear-47 [-1, 5, 512] 262,656
Linear-48 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-49 [-1, 5, 512] 0
Conv1d-50 [-1, 512, 5] 1,050,624
Conv1d-51 [-1, 2048, 5] 1,049,088
Decoder-52 [-1, 5] 0
Embedding-53 [-1, 5] 3,584
Embedding-54 [-1, 5] 3,072
DecoderLayer-55 [-1, 5, 512] 0
MultiHeadAttention-56 [-1, 5, 512] 0
Linear-57 [-1, 5, 512] 262,656
Linear-58 [-1, 5, 512] 262,656
Linear-59 [-1, 5, 512] 262,656
MultiHeadAttention-60 [-1, 5, 512] 0
Linear-61 [-1, 5, 512] 262,656
Linear-62 [-1, 5, 512] 262,656
Linear-63 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-64 [-1, 5, 512] 0
Conv1d-65 [-1, 512, 5] 1,050,624
Conv1d-66 [-1, 2048, 5] 1,049,088
DecoderLayer-67 [-1, 5, 512] 0
MultiHeadAttention-68 [-1, 5, 512] 0
Linear-69 [-1, 5, 512] 262,656
Linear-70 [-1, 5, 512] 262,656
Linear-71 [-1, 5, 512] 262,656
MultiHeadAttention-72 [-1, 5, 512] 0
Linear-73 [-1, 5, 512] 262,656
Linear-74 [-1, 5, 512] 262,656
Linear-75 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-76 [-1, 5, 512] 0
Conv1d-77 [-1, 512, 5] 1,050,624
Conv1d-78 [-1, 2048, 5] 1,049,088
DecoderLayer-79 [-1, 5, 512] 0
MultiHeadAttention-80 [-1, 5, 512] 0
Linear-81 [-1, 5, 512] 262,656
Linear-82 [-1, 5, 512] 262,656
Linear-83 [-1, 5, 512] 262,656
MultiHeadAttention-84 [-1, 5, 512] 0
Linear-85 [-1, 5, 512] 262,656
Linear-86 [-1, 5, 512] 262,656
Linear-87 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-88 [-1, 5, 512] 0
Conv1d-89 [-1, 512, 5] 1,050,624
Conv1d-90 [-1, 2048, 5] 1,049,088
DecoderLayer-91 [-1, 5, 512] 0
MultiHeadAttention-92 [-1, 5, 512] 0
Linear-93 [-1, 5, 512] 262,656
Linear-94 [-1, 5, 512] 262,656
Linear-95 [-1, 5, 512] 262,656
MultiHeadAttention-96 [-1, 5, 512] 0
Linear-97 [-1, 5, 512] 262,656
Linear-98 [-1, 5, 512] 262,656
Linear-99 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-100 [-1, 5, 512] 0
Conv1d-101 [-1, 512, 5] 1,050,624
Conv1d-102 [-1, 2048, 5] 1,049,088
DecoderLayer-103 [-1, 5, 512] 0
MultiHeadAttention-104 [-1, 5, 512] 0
Linear-105 [-1, 5, 512] 262,656
Linear-106 [-1, 5, 512] 262,656
Linear-107 [-1, 5, 512] 262,656
MultiHeadAttention-108 [-1, 5, 512] 0
Linear-109 [-1, 5, 512] 262,656
Linear-110 [-1, 5, 512] 262,656
Linear-111 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-112 [-1, 5, 512] 0
Conv1d-113 [-1, 512, 5] 1,050,624
Conv1d-114 [-1, 2048, 5] 1,049,088
DecoderLayer-115 [-1, 5, 512] 0
MultiHeadAttention-116 [-1, 5, 512] 0
Linear-117 [-1, 5, 512] 262,656
Linear-118 [-1, 5, 512] 262,656
Linear-119 [-1, 5, 512] 262,656
MultiHeadAttention-120 [-1, 5, 512] 0
Linear-121 [-1, 5, 512] 262,656
Linear-122 [-1, 5, 512] 262,656
Linear-123 [-1, 5, 512] 262,656
PoswiseFeedForwardNet-124 [-1, 5, 512] 0
Conv1d-125 [-1, 512, 5] 1,050,624
Conv1d-126 [-1, 2048, 5] 1,049,088
Linear-127 [-1, 5, 512] 3,584
=======================================================================
Total params: 39,396,352
Trainable params: 39,390,208
Non-trainable params: 6,144
```2) showing output shape
```
# show output shape
summary(model, enc_inputs, dec_inputs, show_input=False)-----------------------------------------------------------------------
Layer (type) Output Shape Param #
=======================================================================
Embedding-1 [-1, 5, 512] 3,072
Embedding-2 [-1, 5, 512] 3,072
Linear-3 [-1, 5, 512] 262,656
Linear-4 [-1, 5, 512] 262,656
Linear-5 [-1, 5, 512] 262,656
MultiHeadAttention-6 [-1, 8, 5, 5] 0
Conv1d-7 [-1, 2048, 5] 1,050,624
Conv1d-8 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-9 [-1, 5, 512] 0
EncoderLayer-10 [-1, 8, 5, 5] 0
Linear-11 [-1, 5, 512] 262,656
Linear-12 [-1, 5, 512] 262,656
Linear-13 [-1, 5, 512] 262,656
MultiHeadAttention-14 [-1, 8, 5, 5] 0
Conv1d-15 [-1, 2048, 5] 1,050,624
Conv1d-16 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-17 [-1, 5, 512] 0
EncoderLayer-18 [-1, 8, 5, 5] 0
Linear-19 [-1, 5, 512] 262,656
Linear-20 [-1, 5, 512] 262,656
Linear-21 [-1, 5, 512] 262,656
MultiHeadAttention-22 [-1, 8, 5, 5] 0
Conv1d-23 [-1, 2048, 5] 1,050,624
Conv1d-24 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-25 [-1, 5, 512] 0
EncoderLayer-26 [-1, 8, 5, 5] 0
Linear-27 [-1, 5, 512] 262,656
Linear-28 [-1, 5, 512] 262,656
Linear-29 [-1, 5, 512] 262,656
MultiHeadAttention-30 [-1, 8, 5, 5] 0
Conv1d-31 [-1, 2048, 5] 1,050,624
Conv1d-32 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-33 [-1, 5, 512] 0
EncoderLayer-34 [-1, 8, 5, 5] 0
Linear-35 [-1, 5, 512] 262,656
Linear-36 [-1, 5, 512] 262,656
Linear-37 [-1, 5, 512] 262,656
MultiHeadAttention-38 [-1, 8, 5, 5] 0
Conv1d-39 [-1, 2048, 5] 1,050,624
Conv1d-40 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-41 [-1, 5, 512] 0
EncoderLayer-42 [-1, 8, 5, 5] 0
Linear-43 [-1, 5, 512] 262,656
Linear-44 [-1, 5, 512] 262,656
Linear-45 [-1, 5, 512] 262,656
MultiHeadAttention-46 [-1, 8, 5, 5] 0
Conv1d-47 [-1, 2048, 5] 1,050,624
Conv1d-48 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-49 [-1, 5, 512] 0
EncoderLayer-50 [-1, 8, 5, 5] 0
Encoder-51 [-1, 8, 5, 5] 0
Embedding-52 [-1, 5, 512] 3,584
Embedding-53 [-1, 5, 512] 3,072
Linear-54 [-1, 5, 512] 262,656
Linear-55 [-1, 5, 512] 262,656
Linear-56 [-1, 5, 512] 262,656
MultiHeadAttention-57 [-1, 8, 5, 5] 0
Linear-58 [-1, 5, 512] 262,656
Linear-59 [-1, 5, 512] 262,656
Linear-60 [-1, 5, 512] 262,656
MultiHeadAttention-61 [-1, 8, 5, 5] 0
Conv1d-62 [-1, 2048, 5] 1,050,624
Conv1d-63 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-64 [-1, 5, 512] 0
DecoderLayer-65 [-1, 8, 5, 5] 0
Linear-66 [-1, 5, 512] 262,656
Linear-67 [-1, 5, 512] 262,656
Linear-68 [-1, 5, 512] 262,656
MultiHeadAttention-69 [-1, 8, 5, 5] 0
Linear-70 [-1, 5, 512] 262,656
Linear-71 [-1, 5, 512] 262,656
Linear-72 [-1, 5, 512] 262,656
MultiHeadAttention-73 [-1, 8, 5, 5] 0
Conv1d-74 [-1, 2048, 5] 1,050,624
Conv1d-75 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-76 [-1, 5, 512] 0
DecoderLayer-77 [-1, 8, 5, 5] 0
Linear-78 [-1, 5, 512] 262,656
Linear-79 [-1, 5, 512] 262,656
Linear-80 [-1, 5, 512] 262,656
MultiHeadAttention-81 [-1, 8, 5, 5] 0
Linear-82 [-1, 5, 512] 262,656
Linear-83 [-1, 5, 512] 262,656
Linear-84 [-1, 5, 512] 262,656
MultiHeadAttention-85 [-1, 8, 5, 5] 0
Conv1d-86 [-1, 2048, 5] 1,050,624
Conv1d-87 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-88 [-1, 5, 512] 0
DecoderLayer-89 [-1, 8, 5, 5] 0
Linear-90 [-1, 5, 512] 262,656
Linear-91 [-1, 5, 512] 262,656
Linear-92 [-1, 5, 512] 262,656
MultiHeadAttention-93 [-1, 8, 5, 5] 0
Linear-94 [-1, 5, 512] 262,656
Linear-95 [-1, 5, 512] 262,656
Linear-96 [-1, 5, 512] 262,656
MultiHeadAttention-97 [-1, 8, 5, 5] 0
Conv1d-98 [-1, 2048, 5] 1,050,624
Conv1d-99 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-100 [-1, 5, 512] 0
DecoderLayer-101 [-1, 8, 5, 5] 0
Linear-102 [-1, 5, 512] 262,656
Linear-103 [-1, 5, 512] 262,656
Linear-104 [-1, 5, 512] 262,656
MultiHeadAttention-105 [-1, 8, 5, 5] 0
Linear-106 [-1, 5, 512] 262,656
Linear-107 [-1, 5, 512] 262,656
Linear-108 [-1, 5, 512] 262,656
MultiHeadAttention-109 [-1, 8, 5, 5] 0
Conv1d-110 [-1, 2048, 5] 1,050,624
Conv1d-111 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-112 [-1, 5, 512] 0
DecoderLayer-113 [-1, 8, 5, 5] 0
Linear-114 [-1, 5, 512] 262,656
Linear-115 [-1, 5, 512] 262,656
Linear-116 [-1, 5, 512] 262,656
MultiHeadAttention-117 [-1, 8, 5, 5] 0
Linear-118 [-1, 5, 512] 262,656
Linear-119 [-1, 5, 512] 262,656
Linear-120 [-1, 5, 512] 262,656
MultiHeadAttention-121 [-1, 8, 5, 5] 0
Conv1d-122 [-1, 2048, 5] 1,050,624
Conv1d-123 [-1, 512, 5] 1,049,088
PoswiseFeedForwardNet-124 [-1, 5, 512] 0
DecoderLayer-125 [-1, 8, 5, 5] 0
Decoder-126 [-1, 8, 5, 5] 0
Linear-127 [-1, 5, 7] 3,584
=======================================================================
Total params: 39,396,352
Trainable params: 39,390,208
Non-trainable params: 6,144
-----------------------------------------------------------------------
```3) showing hierarchical summary
```
Transformer(
(encoder): Encoder(
(src_emb): Embedding(6, 512), 3,072 params
(pos_emb): Embedding(6, 512), 3,072 params
(layers): ModuleList(
(0): EncoderLayer(
(enc_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 2,887,680 params
(1): EncoderLayer(
(enc_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 2,887,680 params
(2): EncoderLayer(
(enc_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 2,887,680 params
(3): EncoderLayer(
(enc_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 2,887,680 params
(4): EncoderLayer(
(enc_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 2,887,680 params
(5): EncoderLayer(
(enc_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 2,887,680 params
), 17,326,080 params
), 17,332,224 params
(decoder): Decoder(
(tgt_emb): Embedding(7, 512), 3,584 params
(pos_emb): Embedding(6, 512), 3,072 params
(layers): ModuleList(
(0): DecoderLayer(
(dec_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(dec_enc_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 3,675,648 params
(1): DecoderLayer(
(dec_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(dec_enc_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 3,675,648 params
(2): DecoderLayer(
(dec_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(dec_enc_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 3,675,648 params
(3): DecoderLayer(
(dec_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(dec_enc_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 3,675,648 params
(4): DecoderLayer(
(dec_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(dec_enc_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 3,675,648 params
(5): DecoderLayer(
(dec_self_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(dec_enc_attn): MultiHeadAttention(
(W_Q): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_K): Linear(in_features=512, out_features=512, bias=True), 262,656 params
(W_V): Linear(in_features=512, out_features=512, bias=True), 262,656 params
), 787,968 params
(pos_ffn): PoswiseFeedForwardNet(
(conv1): Conv1d(512, 2048, kernel_size=(1,), stride=(1,)), 1,050,624 params
(conv2): Conv1d(2048, 512, kernel_size=(1,), stride=(1,)), 1,049,088 params
), 2,099,712 params
), 3,675,648 params
), 22,053,888 params
), 22,060,544 params
(projection): Linear(in_features=512, out_features=7, bias=False), 3,584 params
), 39,396,352 params```
## Reference
```python
code_reference = { 'https://github.com/pytorch/pytorch/issues/2001',
'https://gist.github.com/HTLife/b6640af9d6e7d765411f8aa9aa94b837',
'https://github.com/sksq96/pytorch-summary',
'Inspired by https://github.com/sksq96/pytorch-summary'}
```