https://github.com/gregordecillia/statisticaldays2022
Slides for the Austrian and Slovenian Statistical Days 2022
https://github.com/gregordecillia/statisticaldays2022
datatables highcharts open-data shiny-r workflow
Last synced: about 1 month ago
JSON representation
Slides for the Austrian and Slovenian Statistical Days 2022
- Host: GitHub
- URL: https://github.com/gregordecillia/statisticaldays2022
- Owner: GregorDeCillia
- Created: 2022-03-11T11:55:48.000Z (about 3 years ago)
- Default Branch: master
- Last Pushed: 2022-04-21T15:03:36.000Z (about 3 years ago)
- Last Synced: 2025-01-29T04:34:57.789Z (3 months ago)
- Topics: datatables, highcharts, open-data, shiny-r, workflow
- Language: HTML
- Homepage: https://GregorDeCillia.github.io/StatisticalDays2022/
- Size: 18.4 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Behind the Scenes of Interactive Charts
Repo for my presentation at the [Austrian and Slovenian Statistical Days 2022](http://www.stat.tugraz.at/StatisticalDays2022/index.html) at TU Graz.
The abstract can be found in [`abstract.md`](abstract.md) and additional metadata is available in [`meta.json`](meta.json).## Slides
* html: https://GregorDeCillia.github.io/StatisticalDays2022/
* pdf: https://GregorDeCillia.github.io/StatisticalDays2022/slides.pdf## About
The talk will be about the same project as my [uRos2021 presentation](https://github.com/GregorDeCillia/pipedream/).
However since this is not an R conference it will be less technical.
Instead, the focus will lie on the authors of our website articles.
How can they be empowered to generate interactive charts and tables without assistance from developers or designers?The presentation will include sneak-peeks for the new webpage of Statistics Austria and the [STATcube API](https://github.com/statistikat/STATcubeR/).
## π Buzzwords
* [highcharts.js](https://www.highcharts.com/)
* [datatables.js](https://datatables.net/)
* workflow
* official statistics
* web application
* open govenrnment data## Links
* π§ STATcubeR: https://statistikat.github.io/STATcubeR
* πΊοΈ STATatlas: https://www.statistik.at/atlas/
* β»οΈ Material Flows 2019: https://kreislaufwirtschaft.statistik.at/kreislaufwirtschaft/en/
* π₯οΈ Economic Trend Monitor: https://monitor.statistik.at/
* π shiny: https://shiny.rstudio.com/
* π§° plumber: https://www.rplumber.io/