Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gregoritsch3/ml_eda_classification_diabetes
An EDA and Machine Learning Classification exercise on the Diabetes dataset demonstrating the use of SQLAlchemy data import from an SQL database (PostgreSQL), Pre-processing Pipelines, ANOVA, 9 ScikitLearn ML models, Hyperparamter Tuning for the best performing one, and feature importance.
https://github.com/gregoritsch3/ml_eda_classification_diabetes
anova machine-learning matplotlib numpy pandas pipelines scikit-learn seaborn sql sqlalchemy statistics
Last synced: 21 days ago
JSON representation
An EDA and Machine Learning Classification exercise on the Diabetes dataset demonstrating the use of SQLAlchemy data import from an SQL database (PostgreSQL), Pre-processing Pipelines, ANOVA, 9 ScikitLearn ML models, Hyperparamter Tuning for the best performing one, and feature importance.
- Host: GitHub
- URL: https://github.com/gregoritsch3/ml_eda_classification_diabetes
- Owner: Gregoritsch3
- Created: 2024-12-17T14:20:20.000Z (30 days ago)
- Default Branch: main
- Last Pushed: 2024-12-22T09:07:18.000Z (25 days ago)
- Last Synced: 2024-12-22T09:32:40.209Z (25 days ago)
- Topics: anova, machine-learning, matplotlib, numpy, pandas, pipelines, scikit-learn, seaborn, sql, sqlalchemy, statistics
- Language: Jupyter Notebook
- Homepage: https://www.kaggle.com/datasets/mathchi/diabetes-data-set
- Size: 2.83 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ML_EDA_Classification_Diabetes
An EDA and Machine Learning Classification exercise on the Diabetes dataset demonstrating the use of SQLAlchemy data import from an SQL database (PostgreSQL), Pre-processing Pipelines, ANOVA, 9 ScikitLearn ML models,hyperparamter tuning for the best performing one, and feature importance. The .ipynb file contains comments that describe the problem-solving methodology.