An open API service indexing awesome lists of open source software.

https://github.com/griffintaur/clda_neurips21


https://github.com/griffintaur/clda_neurips21

Last synced: 4 months ago
JSON representation

Awesome Lists containing this project

README

        

## CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation [[Paper]](https://arxiv.org/abs/2107.00085) [[Website]](https://griffintaur.github.io/CLDA_NeurIPS/)

This repository contains the implementation details of our CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation (CLDA) approach for domain adaptation in images.

Ankit Singh , "CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation"

If you use the codes and models from this repo, please cite our work. Thanks!

```
@inproceedings{
singh2021clda,
title={{CLDA}: Contrastive Learning for Semi-Supervised Domain Adaptation},
author={Ankit Singh},
booktitle={Advances in Neural Information Processing Systems},
editor={A. Beygelzimer and Y. Dauphin and P. Liang and J. Wortman Vaughan},
year={2021},
url={https://openreview.net/forum?id=1ODSsnoMBav}
}
```

## Acknowledgments
The implementation is built on the pytorch implementation of [SSDA_MME](https://github.com/VisionLearningGroup/SSDA_MME) and [APE](https://github.com/TKKim93/APE)

### Dataset Structure
You can download the datasets by following the instructions in [SSDA_MME](https://github.com/VisionLearningGroup/SSDA_MME).
```
data---
|
multi---
| |
| Real
| Clipart
| Product
| Real
office_home---
| |
| Art
| Clipart
| Product
| Real
office---
| |
| amazon
| dslr
| webcam
txt---
|
multi---
| |
| labeled_source_images_real.txt
| unlabeled_target_images_real_3.txt
| labeled_target_images_real_3.txt
| unlabeled_source_images_sketch.txt
| ...
office---
| |
| labeled_source_images_amazon.txt
| unlabeled_target_images_amazon_3.txt
| labeled_target_images_amazon_3.txt
| unlabeled_source_images_webcam.txt
| ...
office_home---
|
...
```

### Example
#### Train
* DomainNet (clipart, painting, real, sketch)
```
python clda_final.py --dataset multi --source real --target sketch --save_interval 500 --steps 50000 --net resnet34 --num 3 --save_check
```
* Office-home (Art, Clipart, Product, Real)
* Office (amazon, dslr, webcam)