An open API service indexing awesome lists of open source software.

https://github.com/grimoire/mmdetection-to-tensorrt

convert mmdetection model to tensorrt, support fp16, int8, batch input, dynamic shape etc.
https://github.com/grimoire/mmdetection-to-tensorrt

cascade-rcnn faster-rcnn inference mmdetection object-detection retinanet ssd tensorrt yolov3

Last synced: about 2 months ago
JSON representation

convert mmdetection model to tensorrt, support fp16, int8, batch input, dynamic shape etc.

Awesome Lists containing this project

README

        

# MMDet to TensorRT

> [!NOTE]
>
> The main branch is used to support model conversion of MMDetection>=3.0.
> If you want to convert model on older MMDetection, Please switch to branch:
> - [mmdet2trt=v0.5.0](https://github.com/grimoire/mmdetection-to-tensorrt/tree/v0.5.0)
> - [torch2trt_dynamic=v0.5.0](https://github.com/grimoire/torch2trt_dynamic/tree/v0.5.0)
> - [amirstan_plugin=v0.5.0](https://github.com/grimoire/amirstan_plugin/tree/v0.5.0).

## News

- 2024.02: Support MMDetection>=3.0

## Introduction

This project aims to support End2End deployment of models in MMDetection with TensorRT.

Mask support is **experiment**.

Features:

- fp16
- int8(experiment)
- batched input
- dynamic input shape
- combination of different modules
- DeepStream

## Requirement

- install MMDetection:

```bash
pip install openmim
mim install mmdet==3.3.0
```

- install [torch2trt_dynamic](https://github.com/grimoire/torch2trt_dynamic):

```bash
git clone https://github.com/grimoire/torch2trt_dynamic.git torch2trt_dynamic
cd torch2trt_dynamic
pip install -e .
```

- install [amirstan_plugin](https://github.com/grimoire/amirstan_plugin):
- Install tensorrt: [TensorRT](https://developer.nvidia.com/tensorrt)
- clone repo and build plugin

```bash
git clone --depth=1 https://github.com/grimoire/amirstan_plugin.git
cd amirstan_plugin
git submodule update --init --progress --depth=1
mkdir build
cd build
cmake -DTENSORRT_DIR=${TENSORRT_DIR} ..
make -j10
```

> [!NOTE]
>
> **DON'T FORGET** setting the environment variable(in `~/.bashrc`):
>
> ```bash
> export AMIRSTAN_LIBRARY_PATH=${amirstan_plugin_root}/build/lib
> ```

## Installation

### Host

```bash
git clone https://github.com/grimoire/mmdetection-to-tensorrt.git
cd mmdetection-to-tensorrt
pip install -e .
```

### Docker

Build docker image

```bash
sudo docker build -t mmdet2trt_docker:v1.0 docker/
```

Run (will show the help for the CLI entrypoint)

```bash
sudo docker run --gpus all -it --rm -v ${your_data_path}:${bind_path} mmdet2trt_docker:v1.0
```

Or if you want to open a terminal inside de container:

```bash
sudo docker run --gpus all -it --rm -v ${your_data_path}:${bind_path} --entrypoint bash mmdet2trt_docker:v1.0
```

Example conversion:

```bash
sudo docker run --gpus all -it --rm -v ${your_data_path}:${bind_path} mmdet2trt_docker:v1.0 ${bind_path}/config.py ${bind_path}/checkpoint.pth ${bind_path}/output.trt
```

## Usage

Create a TensorRT model from mmdet model.
detail can be found in [getting_started.md](./docs/getting_started.md)

### CLI

```bash
# conversion might take few minutes.
mmdet2trt ${CONFIG_PATH} ${CHECKPOINT_PATH} ${OUTPUT_PATH}
```

Run mmdet2trt -h for help on optional arguments.

### Python

```python
shape_ranges=dict(
x=dict(
min=[1,3,320,320],
opt=[1,3,800,1344],
max=[1,3,1344,1344],
)
)
trt_model = mmdet2trt(cfg_path,
weight_path,
shape_ranges=shape_ranges,
fp16_mode=True)

# save converted model
torch.save(trt_model.state_dict(), save_model_path)

# save engine if you want to use it in c++ api
with open(save_engine_path, mode='wb') as f:
f.write(trt_model.state_dict()['engine'])
```

> [!NOTE]
>
> The input of the engine is the tensor **after preprocess**.
> The output of the engine is `num_dets, bboxes, scores, class_ids`. if you enable the `enable_mask` flag, there will be another output `mask`.
> The bboxes output of the engine did not divided by `scale_factor`.

how to perform inference with the converted model.

```python
from mmdet.apis import inference_detector
from mmdet2trt.apis import create_wrap_detector

# create wrap detector
trt_detector = create_wrap_detector(trt_model, cfg_path, device_id)

# result share same format as mmdetection
result = inference_detector(trt_detector, image_path)
```

Try demo in `demo/inference.py`, or `demo/cpp` if you want to do inference with c++ api.

Read [getting_started.md](./docs/getting_started.md) for more details.

## How does it works?

Most other project use pytorch=>ONNX=>tensorRT route, This repo convert pytorch=>tensorRT directly, avoid unnecessary ONNX IR.
Read [how-does-it-work](https://github.com/NVIDIA-AI-IOT/torch2trt#how-does-it-work) for detail.

## Support Model/Module

> [!NOTE]
>
> Some models have only been tested on MMDet<3.0. If you found any failed model,
> Please report in the issue.

- [x] Faster R-CNN
- [x] Cascade R-CNN
- [x] Double-Head R-CNN
- [x] Group Normalization
- [x] Weight Standardization
- [x] DCN
- [x] SSD
- [x] RetinaNet
- [x] Libra R-CNN
- [x] FCOS
- [x] Fovea
- [x] CARAFE
- [x] FreeAnchor
- [x] RepPoints
- [x] NAS-FPN
- [x] ATSS
- [x] PAFPN
- [x] FSAF
- [x] GCNet
- [x] Guided Anchoring
- [x] Generalized Attention
- [x] Dynamic R-CNN
- [x] Hybrid Task Cascade
- [x] DetectoRS
- [x] Side-Aware Boundary Localization
- [x] YOLOv3
- [x] PAA
- [ ] CornerNet(WIP)
- [x] Generalized Focal Loss
- [x] Grid RCNN
- [x] VFNet
- [x] GROIE
- [x] Mask R-CNN(experiment)
- [x] Cascade Mask R-CNN(experiment)
- [x] Cascade RPN
- [x] DETR
- [x] YOLOX

Tested on:

- torch=2.2.0
- tensorrt=8.6.1
- mmdetection=3.3.0
- cuda=11.7

## FAQ

read [this page](./docs/FAQ.md) if you meet any problem.

## License

This project is released under the [Apache 2.0 license](LICENSE).