https://github.com/grosssbm/misssbm
An R package for adjusting Stochastic Block Models from networks data sampled under various missing data conditions
https://github.com/grosssbm/misssbm
missing-data nas network-analysis network-dataset stochastic-block-model
Last synced: 3 months ago
JSON representation
An R package for adjusting Stochastic Block Models from networks data sampled under various missing data conditions
- Host: GitHub
- URL: https://github.com/grosssbm/misssbm
- Owner: GrossSBM
- License: gpl-3.0
- Created: 2017-09-02T02:27:02.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2025-03-13T09:04:48.000Z (11 months ago)
- Last Synced: 2025-10-22T05:58:52.634Z (3 months ago)
- Topics: missing-data, nas, network-analysis, network-dataset, stochastic-block-model
- Language: R
- Homepage: http://grosssbm.github.io/missSBM
- Size: 85.1 MB
- Stars: 12
- Watchers: 0
- Forks: 2
- Open Issues: 2
-
Metadata Files:
- Readme: README.Rmd
- License: LICENSE.md
Awesome Lists containing this project
README
---
output: github_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# missSBM: Handling missing data in Stochastic Block Models
[](https://grosssbm.github.io/missSBM/)
[](https://github.com/grosssbm/missSBM/actions)
[](https://cran.r-project.org/package=missSBM)
[](https://github.com/GrossSBM/missSBM/commits/master)
[](https://app.codecov.io/gh/GrossSBM/missSBM?branch=master)
[](https://github.com/GrossSBM/missSBM/actions)
[](https://github.com/GrossSBM/missSBM/actions/workflows/R-CMD-check.yaml)
> When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0 due to missing information between node pairs), it is possible to account for the underlying process that generates those NAs. 'missSBM', presented in 'Barbillon, Chiquet and Tabouy' (2022)
[10.18637/jss.v101.i12](https://doi.org/10.18637/jss.v101.i12), adjusts the popular stochastic block model from network data observed under various missing data conditions, as described in 'Tabouy, Barbillon and Chiquet' (2019) [10.1080/01621459.2018.1562934](https://doi.org/10.1080/01621459.2018.1562934).
## Installation
The Last CRAN version is available via
```{r package CRAN, eval = FALSE}
install.packages("missSBM")
```
The development version is available via
```{r package github, eval = FALSE}
devtools::install_github("grossSBM/missSBM")
```
## References
Please cite our work using the following references:
Barbillon, P., Chiquet, J., & Tabouy, T. (2022). missSBM: An R Package for Handling Missing Values in the Stochastic Block Model. _Journal of Statistical Software_, 101(12), 1–32. DOI: [10.18637/jss.v101.i12](https://doi.org/10.18637/jss.v101.i12)
Timothée Tabouy, Pierre Barbillon & Julien Chiquet (2019) "Variational Inference for Stochastic Block Models from Sampled Data", _Journal of the American Statistical Association_, DOI: [10.1080/01621459.2018.1562934](https://doi.org/10.1080/01621459.2018.1562934)