Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/grtlr/uapca

Uncertainty-aware principal component analysis.
https://github.com/grtlr/uapca

dimensionality-reduction hacktoberfest machine-learning uncertainty visualization

Last synced: 2 months ago
JSON representation

Uncertainty-aware principal component analysis.

Awesome Lists containing this project

README

        

# Uncertainty-aware principal component analysis

![Build Status](https://github.com/grtlr/uapca/workflows/build/badge.svg)
[![npm](https://img.shields.io/npm/v/uapca)](https://www.npmjs.com/package/uapca)
![GitHub](https://img.shields.io/github/license/grtlr/uapca)

This is an implementation of uncertainty-aware principal component analysis, which generalizes PCA to work on probability distributions. You can find a live Observable notebook demonstrating our method [here](https://observablehq.com/@grtlr/uncertainty-aware-pca).

![Teaser](https://raw.githubusercontent.com/grtlr/uapca/master/teaser.gif)

You can find a preprint of our paper at [arXiv:1905.01127](https://arxiv.org/abs/1905.01127) or on my [personal website](https://www.jgoertler.com).
We also extracted means and covariances from the [*student grades* dataset](https://raw.githubusercontent.com/grtlr/uapca/master/data/student_grades.json).

## Example

```js
// Loading the library
import * as uapca from 'uapca';

// Loading and converting the dataset
const student_grades = (await fetch('https://raw.githubusercontent.com/grtlr/uapca/master/data/student_grades.json')).json();
const distributions = student_grades.distributions.map(d => new uapca.MultivariateNormal(d.mean, d.cov));

// Perform uncertainty-aware PCA with scaling factor k = 0.5
const pca = uapca.UaPCA.fit(distributions, 0.5).aligned();

// Project the data onto 2D
const projected_distributions = pca.transform(distributions, 2);
```

## Development

The dependencies can be install using `yarn`:

```bash
yarn install
```

Builds can be prepared using:

```bash
yarn run build
yarn run dev # watches for changes
```

Run tests:

```bash
yarn run test
```

To perform linter checks you there is:

```bash
yarn run lint
yarn run lint-fix # tries to fix some of the warnings
```

## Citation

To cite this work, you can use the BibTex entry in `CITATION.cff`.