Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gstechschulte/autodidact
Applied Statistics, Linear Algebra, Science and Technology through trial and error in programming
https://github.com/gstechschulte/autodidact
linear-algebra machine-learning probability statistics
Last synced: about 2 months ago
JSON representation
Applied Statistics, Linear Algebra, Science and Technology through trial and error in programming
- Host: GitHub
- URL: https://github.com/gstechschulte/autodidact
- Owner: GStechschulte
- Created: 2021-05-19T09:02:40.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2023-01-24T20:05:46.000Z (almost 2 years ago)
- Last Synced: 2024-10-16T02:13:46.751Z (3 months ago)
- Topics: linear-algebra, machine-learning, probability, statistics
- Language: Jupyter Notebook
- Homepage:
- Size: 33.9 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Self Learning
A place for programming and experimenting with various methods and algorithms.
### Probability and Statistics
- [Central Limit Theorem](statistics/central_limit_theorem.ipynb)
- [Correlation](statistics/correlation.ipynb)
- [Law of Large Numbers](statistics/law_of_large_numbers.ipynb)
- [MLE and MAP](statistics/mle_map.ipynb)
- [Epidemiology](statistics/epidemiology.ipynb)
- [KL Divergence](probability/kl_divergence.ipynb)
- [Fundamental Theorem of Calculus](probability/fundamental_theorem_calculus.ipynb)
- [MCMC First principles](probability/mcmc.ipynb)
- [Poisson Distribution](statistics/poisson_distribution.ipynb)
- [Frequentist Uncertainty](statistics/frequentist_uncertainty.ipynb)
- [Epidemiology](statistics/epidemiology.ipynb)
- [Variational Inference - ELBO](probability/vi_elbo.py)
- [MCMC Approximation](probability/monte_carlo_approximation.py)
- [Metropolis-Hastings](probability/samplers/samplers_metroplis_hasting_v2.py)
- [Gibbs sampling a 2d GMM](probability/samplers/samplers_gibbs_2d_gmm.py)
- [Hamiltonian Monte Carlo](probability/samplers/samplers_hmc.py)### Linear Algebra
- [Cross, Inner, Outer, and Dot Products](linear_algebra/Cross-Inner-Outer-Products.ipynb)
- [Linear Combinations, Spans, and Basis Vectors](linear_algebra/Linear-Combinations-Span-Basis.ipynb)
- [Solving systems of equations with Inverse Matrices, Rank, and Null Space](Inverse-Column-Null-Space.ipynb)
- [Matrix Multiplication as a Composition](linear_algebra/Matrix-Multiplication-Transformations.ipynb)
- [The Determinant](linear_algebra/Determinant.ipynb)
- [3d Linear Transformations](linear_algebra/3d-Linear-Transformations.ipynb)
- [Abstract Vector Spaces](linear_algebra/Abstract-Vector-Spaces.ipynb)
- [Eigenvectors and Eigenvalues](linear_algebra/Eigenvectors-Eigenvalues.ipynb)
- [Singular Value Decomposition](linear_algebra/SVD.ipynb)### Machine Learning from Scratch
- [Logistic Regression](vanilla_ml/logistic_regression.ipynb)
- [Generative Classifer](vanilla_ml/kde.ipynb)
- [Gradient Descent](vanilla_ml/gradient_descent.ipynb)
- [Kernel Functions](vanilla_ml/kernel_functions.ipynb)
- [Gaussian Processes](vanilla_ml/gaussian_processes.ipynb)
- [Inference vs. Prediction pt.1 & 2](vanilla_ml/inference_vs_prediction_pt1.ipynb)
- [Making a Algorithm Learn](vanilla_ml/learning_and_nn.ipynb)
- [Principal Component Analysis](vanilla_ml/pca.py)### Microeconomics
- [Bayesian Demand Uncertainty and Forecasting](microeconomics/bayesian_demand_uncertainty.ipynb)
- [Ride Hailing Services Regression Discontinuity](microeconomics/regression-discontinuity/)
- [Marginal cost curves](microeconomics/marginal.ipynb)