Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/gt-ripl/robo-vln

Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"
https://github.com/gt-ripl/robo-vln

artificial-intelligence bert computer-vision deep-learning deep-neural-networks habitat-api habitat-sim language navigation python pytorch robotics supervised-learning transformers vision-and-language vision-and-language-navigation

Last synced: about 1 month ago
JSON representation

Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Awesome Lists containing this project

README

        

# Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hierarchical-cross-modal-agent-for-robotics-1/vision-and-language-navigation-on-robo-vln)](https://paperswithcode.com/sota/vision-and-language-navigation-on-robo-vln?p=hierarchical-cross-modal-agent-for-robotics-1)

This repository is the pytorch implementation of our paper:

**Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation**

[__***Muhammad Zubair Irshad***__](https://zubairirshad.com), [Chih-Yao Ma](https://chihyaoma.github.io/), [Zsolt Kira](https://www.cc.gatech.edu/~zk15/)

International Conference on Robotics and Automation (ICRA), 2021

[[Project Page](https://zubair-irshad.github.io/projects/robo-vln.html)] [[arXiv](https://arxiv.org/abs/2104.10674)] [[GitHub](https://github.com/GT-RIPL/robo-vln)]



## Citation

If you find this repository useful, please cite our paper:

```
@inproceedings{irshad2021hierarchical,
title={Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation},
author={Muhammad Zubair Irshad and Chih-Yao Ma and Zsolt Kira},
booktitle={Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
year={2021}
}

@INPROCEEDINGS{irshad2022sasra,
author={Irshad, Muhammad Zubair and Chowdhury Mithun, Niluthpol and Seymour, Zachary and Chiu, Han-Pang and Samarasekera, Supun and Kumar, Rakesh},
booktitle={2022 26th International Conference on Pattern Recognition (ICPR)},
title={Semantically-aware Spatio-temporal Reasoning Agent for Vision-and-Language Navigation in Continuous Environments},
year={2022},
volume={},
number={},
pages={4065-4071},
keywords={Visualization;Three-dimensional displays;Navigation;Semantics;Natural languages;Transformers;Feature extraction},
doi={10.1109/ICPR56361.2022.9956561}}
```

## Installation

Clone the current repository and required submodules:

```bash
git clone https://github.com/GT-RIPL/robo-vln
cd robo-vln

export robovln_rootdir=$PWD

git submodule init
git submodule update
```

### Habitat and Other Dependencies

Install `robo-vln` dependencies as follows:
```bash
conda create -n habitat python=3.6 cmake=3.14.0
cd $robovln_rootdir
python -m pip install -r requirements.txt
```

We use modified versions of [Habitat-Sim](https://github.com/facebookresearch/habitat-sim) and [Habitat-API](https://github.com/facebookresearch/habitat-lab) to support continuous control/action-spaces in Habitat Simulator. The details regarding continuous action spaces and converting discrete VLN dataset into continuous control formulation can be found in our [paper](https://arxiv.org/pdf/2104.10674.pdf). The specific commits of our modified [Habitat-Sim](https://github.com/facebookresearch/habitat-sim) and [Habitat-API](https://github.com/facebookresearch/habitat-lab) versions are mentioned below.

```bash
# installs both habitat-api and habitat_baselines
cd $robovln_rootdir/environments/habitat-lab
python -m pip install -r requirements.txt
python -m pip install -r habitat_baselines/rl/requirements.txt
python -m pip install -r habitat_baselines/rl/ddppo/requirements.txt
python setup.py develop --all

# Install habitat-sim
cd $robovln_rootdir/environments/habitat-sim
python setup.py install --headless --with-cuda
```

### Data

Similar to [Habitat-API](https://github.com/facebookresearch/habitat-lab), we expect a `data` folder (or symlink) with a particular structure in the top-level directory of this project.

#### Matterport3D

We utilize Matterport3D (MP3D) photo-realistic scene reconstructions to train and evaluate our agent. A total of 90 Matterport3D scenes are used for `robo-vln`. Here is the official Matterport3D Dataset download link and associated instructions: [project webpage](https://niessner.github.io/Matterport/). To download the scenes needed for `robo-vln`, run the following commands:

```bash
# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/
```
Extract this data to `data/scene_datasets/mp3d` such that it has the form `data/scene_datasets/mp3d/{scene}/{scene}.glb`.

#### Dataset



The Robo-VLN dataset is a continuous control formualtion of the VLN-CE dataset by [Krantz et al](https://arxiv.org/pdf/2004.02857.pdf) ported over from Room-to-Room (R2R) dataset created by [Anderson et al](http://openaccess.thecvf.com/content_cvpr_2018/papers/Anderson_Vision-and-Language_Navigation_Interpreting_CVPR_2018_paper.pdf). The details regarding converting discrete VLN dataset into continuous control formulation can be found in our [paper](https://arxiv.org/pdf/2104.10674.pdf).

| Dataset | Path to extract | Size |
|-------------- |---------------------------- |------- |
| [robo_vln_v1.zip](https://www.dropbox.com/s/1e339avr84tfrbt/robo_vln_v1.zip?dl=1) | `data/datasets/robo_vln_v1` | 76.9 MB |

#### Robo-VLN Dataset

The dataset `robo_vln_v1` contains the `train`, `val_seen`, and `val_unseen` splits.

* train: 7739 episodes
* val_seen: 570 episodes
* val_unseen: 1224 episodes

Format of `{split}.json.gz`

```
{
'episodes' = [
{
'episode_id': 4991,
'trajectory_id': 3279,
'scene_id': 'mp3d/JeFG25nYj2p/JeFG25nYj2p.glb',
'instruction': {
'instruction_text': 'Walk past the striped area rug...',
'instruction_tokens': [2384, 1589, 2202, 2118, 133, 1856, 9]
},
'start_position': [10.257800102233887, 0.09358400106430054, -2.379739999771118],
'start_rotation': [0, 0.3332950713608026, 0, 0.9428225683587541],
'goals': [
{
'position': [3.360340118408203, 0.09358400106430054, 3.07817006111145],
'radius': 3.0
}
],
'reference_path': [
[10.257800102233887, 0.09358400106430054, -2.379739999771118],
[9.434900283813477, 0.09358400106430054, -1.3061100244522095]
...
[3.360340118408203, 0.09358400106430054, 3.07817006111145],
],
'info': {'geodesic_distance': 9.65537166595459},
},
...
],
'instruction_vocab': [
'word_list': [..., 'orchids', 'order', 'orient', ...],
'word2idx_dict': {
...,
'orchids': 1505,
'order': 1506,
'orient': 1507,
...
},
'itos': [..., 'orchids', 'order', 'orient', ...],
'stoi': {
...,
'orchids': 1505,
'order': 1506,
'orient': 1507,
...
},
'num_vocab': 2504,
'UNK_INDEX': 1,
'PAD_INDEX': 0,
]
}
```
* Format of `{split}_gt.json.gz`

```
{
'4991': {
'actions': [
...
[-0.999969482421875, 1.0],
[-0.9999847412109375, 0.15731772780418396],
...
],
'forward_steps': 325,
'locations': [
[10.257800102233887, 0.09358400106430054, -2.379739999771118],
[10.257800102233887, 0.09358400106430054, -2.379739999771118],
...
[-12.644463539123535, 0.1518409252166748, 4.2241311073303220]
]
}
...
}
```
#### Depth Encoder Weights
Similar to [VLN-CE](https://arxiv.org/pdf/2004.02857.pdf), our learning-based models utilizes a depth encoder pretained on a large-scale point-goal navigation task i.e. [DDPPO](https://arxiv.org/abs/1911.00357). We utilize depth pretraining by using the DDPPO features from the ResNet50 from the original paper. The pretrained network can be downloaded [here](https://dl.fbaipublicfiles.com/habitat/data/baselines/v1/ddppo/ddppo-models.zip). Extract the contents of `ddppo-models.zip` to `data/ddppo-models/{model}.pth`.

## Training and reproducing results

###
We use `run.py` script to train and evaluate all of our baseline models. Use `run.py` along with a configuration file and a run type (either `train` or `eval`) to train or evaluate:
```bash
python run.py --exp-config path/to/config.yaml --run-type {train | eval}
```
For lists of modifiable configuration options, see the default [task config](habitat_extensions/config/default.py) and [experiment config](robo_vln_baselines/config/default.py) files.

### Evaluating Models
All models can be evaluated using `python run.py --exp-config path/to/config.yaml --run-type eval`. The relevant config entries for evaluation are:

```bash
EVAL_CKPT_PATH_DIR # path to a checkpoint or a directory of checkpoints
EVAL.USE_CKPT_CONFIG # if True, use the config saved in the checkpoint file
EVAL.SPLIT # which dataset split to evaluate on (typically val_seen or val_unseen)
EVAL.EPISODE_COUNT # how many episodes to evaluate
```
If `EVAL.EPISODE_COUNT` is equal to or greater than the number of episodes in the evaluation dataset, all episodes will be evaluated. If `EVAL_CKPT_PATH_DIR` is a directory, one checkpoint will be evaluated at a time. If there are no more checkpoints to evaluate, the script will poll the directory every few seconds looking for a new one. Each config file listed in the next section is capable of both training and evaluating the model it is accompanied by.

### Off-line Data Buffer
All our models require an off-line data buffer for training. To collect the continuous control dataset for both `train` and `val_seen` splits, run the following commands before training (Please note that it would take some time on a single GPU to store data. Please also make sure to dedicate around ~1.5 TB of hard-disk space for data collection):

`Collect data buffer for train split:`
```bash
python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_train.yaml --run-type train
```

`Collect data buffer for val_seen split:`
```bash
python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_val.yaml --run-type train
```

### CUDA
We use 2 GPUs to train our Hierarchical Model [hierarchical_cma.yaml](robo_vln_baselines/config/paper_configs/hierarchical_cma.yaml). To train the hierarchical model, dedicate 2 GPUs for training as follows:

```bash
CUDA_VISIBLE_DEVICES=0,1 python run.py --exp-config robo_vln_baselines/config/paper_configs/hierarchical_cma.yaml --run-type train
```

## Models/Results From the Paper

| Model | val_seen SPL | val_unseen SPL | Config |
|--------------------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seq2Seq | 0.34 | 0.30 | [seq2seq_robo.yaml](robo_vln_baselines/config/paper_configs/seq2seq_robo.yaml) |
| PM | 0.27 | 0.24 | [seq2seq_robo_pm.yaml](robo_vln_baselines/config/paper_configs/seq2seq_robo_pm.yaml) |
| CMA | 0.25 | 0.25 | [cma.yaml](robo_vln_baselines/config/paper_configs/cma.yaml) |
| **HCM (Ours)** | 0.43 | 0.40 | [hierarchical_cma.yaml](robo_vln_baselines/config/paper_configs/hierarchical_cma.yaml) |

| | Legend |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seq2Seq | [Sequence-to-Sequence](https://github.com/jacobkrantz/VLN-CE). Please see our [paper](https://arxiv.org/pdf/2104.10674.pdf) on modification made to the model to match the continuous action spaces in robo-vln |
| PM | [Progress monitor](https://github.com/chihyaoma/selfmonitoring-agent) |
| CMA | [Cross-Modal Attention model](https://github.com/jacobkrantz/VLN-CE). Please see our [paper](https://arxiv.org/pdf/2104.10674.pdf) on modification made to the model to match the continuous action spaces in robo-vln |
| **HCM** | Hierarchical Cross-Modal Agent Module (The proposed hierarchical VLN model from our [paper](https://arxiv.org/pdf/2104.10674.pdf)). |

### Pretrained Model

We provide pretrained model for our best Hierarchical Cross-Modal Agent ([HCM](https://www.dropbox.com/s/4v8bqks7a8jgjzz/HCM_Agent.pth?dl=1)). Pre-trained Model can be downloaded as follows:

| Pre-trained Model | Size |
|-------------- |------- |
| [HCM_Agent.pth](https://www.dropbox.com/s/4v8bqks7a8jgjzz/HCM_Agent.pth?dl=1) | 691 MB |

## Acknowledgments
* This code is built upon the implementation from [VLN-CE](https://github.com/jacobkrantz/VLN-CE)