Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/guanhuawang/sensai

sensAI: ConvNets Decomposition via Class Parallelism for Fast Inference on Live Data
https://github.com/guanhuawang/sensai

cifar-10 cifar-100 cifar10 cifar100 cnn-classification deep-learning deep-neural-networks distributed-deep-learning distributed-machine-learning distributed-systems imagenet imagenet1k machine-learning mlsys mobilenet-v2 resnet shufflenet-v2 sysml vgg

Last synced: about 4 hours ago
JSON representation

sensAI: ConvNets Decomposition via Class Parallelism for Fast Inference on Live Data

Awesome Lists containing this project

README

        



# sensAI: ConvNets Decomposition via Class Parallelism for Fast Inference on Live Data

## Environment

Linux, python 3.6+

## Setup

```bash
pip install -r requirements.txt
```

## Instruction

Supported CNN architectures and datasets:

| Dataset | Architecture(`ARCH`) |
| ------------- |:-------------:|
| CIFAR-10 | vgg19_bn, resnet110, resnet164, mobilenetv2, shufflenetv2|
| CIFAR-100 | vgg19_bn, resnet110, resnet164|
| ImageNet-1K | vgg19_bn, resnet50|

### 1. Generate class groups

For CIFAR-10/CIFAR-100:
```bash
python3 group_selection.py \
--arch $ARCH \
--resume $pretrained_model \
--dataset $DATASET \
--ngroups $number_of_groups \
--gpu_num $number_of_gpu
```
For ImageNet-1K:
```bash
python3 group_selection.py \
--arch $ARCH \
--dataset imagenet \
--ngroups $number_of_groups \
--gpu_num $number_of_gpu \
--data /{path_to_imagenet_dataset}/
```

Pruning candidate now stored in `./prune_candidate_logs/`

### 2. Prune models

For CIFAR-10/CIFAR-100:
```bash
python3 prune_and_get_model.py \
-a $ARCH \
--dataset $DATASET \
--resume $pretrained_model \
-c ./prune_candidate_logs/ \
-s ./{TO_SAVE_PRUNED_MODEL_DIR}/
```
For ImageNet-1K:
```bash
python3 prune_and_get_model.py \
-a $ARCH \
--dataset imagenet \
-c ./prune_candidate_logs/ \
-s ./{TO_SAVE_PRUNED_MODEL_DIR}/ \
--pretrained
```

Pruned models are now saved in `./{TO_SAVE_PRUNED_MODEL_DIR}/$ARCH/`

### 3. Retrain pruned models

For CIFAR-10/CIFAR-100:
```bash
python3 retrain_grouped_model.py \
-a $ARCH \
--dataset $DATASET \
--resume ./{TO_SAVE_PRUNED_MODEL_DIR}/ \
--train_batch $batch_size \
--epochs $number_of_epochs \
--num_gpus $number_of_gpus
```
For ImageNet-1K:
```bash
python3 retrain_grouped_model.py \
-a $ARCH \
--dataset imagenet \
--resume ./{TO_SAVE_PRUNED_MODEL_DIR}/ \
--epochs $number_of_epochs \
--num_gpus $number_of_gpus \
--train_batch $batch_size \
--data /{path_to_imagenet_dataset}/
```

Retrained models now saved in `./{TO_SAVE_PRUNED_MODEL_DIR}_retrained/$ARCH/`

### 4. Evaluate

For CIFAR-10/CIFAR-100:
```bash
python3 evaluate.py \
-a $ARCH \
--dataset=$DATASET \
--retrained_dir ./{TO_SAVE_PRUNED_MODEL_DIR}_retrained/ \
--test-batch $batch_size
```
For ImageNet-1K:
```bash
python3 evaluate.py \
-d imagenet \
-a $ARCH \
--retrained_dir ./{TO_SAVE_PRUNED_MODEL_DIR}_retrained/ \
--data /{path_to_imagenet_dataset}/
```

## Contributors

Thanks for all the main contributors to this repository:

* [Brandon Hsieh](https://github.com/hsiehbrandon)

* [Zhuang Liu](https://github.com/liuzhuang13)

* [Kenan Jiang](https://github.com/Kenan-Jiang)

* [Kehan Wang](https://github.com/Jason-Khan)

* [Siyuan Zhuang](https://github.com/suquark)

And many others [Zihao Fan](https://github.com/zihao-fan), [Hank O'Brien](https://github.com/hjobrien) , [Yaoqing Yang](https://github.com/nsfzyzz), [Adarsh Karnati](https://github.com/akarnati11), [Jichan Chung](https://github.com/jichan3751), [Yingxin Kang](https://github.com/Miiira), [
Balaji Veeramani](https://github.com/bveeramani), [Sahil Rao](https://github.com/sahilrao21).

## Citation

```text
@inproceedings{wang2021sensAI,
author = {Guanhua Wang and Zhuang Liu and Brandon Hsieh and Siyuan Zhuang and Joseph Gonzalez and Trevor Darrell and Ion Stoica},
title = {{sensAI: ConvNets Decomposition via Class Parallelism for Fast Inference on Live Data}},
booktitle = {Proceedings of Fourth Conference on Machine Learning and Systems (MLSys'21)},
year = {2021}
}
```