Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/guillaumegenthial/tf_metrics

Multi-class metrics for Tensorflow
https://github.com/guillaumegenthial/tf_metrics

f1 metrics multiclass precision recall tensorflow tensorflow-estimator

Last synced: 8 days ago
JSON representation

Multi-class metrics for Tensorflow

Awesome Lists containing this project

README

        

# TF Metrics

[![Build Status](https://travis-ci.org/guillaumegenthial/tf_metrics.svg?branch=master)](https://travis-ci.org/guillaumegenthial/tf_metrics)

Multi-class metrics for Tensorflow, similar to scikit-learn multi-class metrics.

*Thank you all for making this project live (50-100 clones/day 😎). Contributions welcome!*

## Install

To add `tf_metrics` to your current python environment, run

```
pip install git+https://github.com/guillaumegenthial/tf_metrics.git
```

For a more advanced use (editable mode, for developers)

```
git clone https://github.com/guillaumegenthial/tf_metrics.git
cd tf_metrics
pip install -r requirements.txt
```

## Example

Pre-requisite: understand the general `tf.metrics` API. See for instance [the official guide on custom estimators](https://www.tensorflow.org/guide/custom_estimators#evaluate) or the [official documentation](https://www.tensorflow.org/api_docs/python/tf/metrics/accuracy).

Simple example

```python
import tensorflow as tf
import tf_metrics

y_true = [0, 1, 0, 0, 0, 2, 3, 0, 0, 1]
y_pred = [0, 1, 0, 0, 1, 2, 0, 3, 3, 1]
pos_indices = [1, 2, 3] # Class 0 is the 'negative' class
num_classes = 4
average = 'micro'

# Tuple of (value, update_op)
precision = tf_metrics.precision(
y_true, y_pred, num_classes, pos_indices, average=average)
recall = tf_metrics.recall(
y_true, y_pred, num_classes, pos_indices, average=average)
f2 = tf_metrics.fbeta(
y_true, y_pred, num_classes, pos_indices, average=average, beta=2)
f1 = tf_metrics.f1(
y_true, y_pred, num_classes, pos_indices, average=average)

# Run the update op and get the updated value
with tf.Session() as sess:
sess.run(tf.local_variables_initializer())
sess.run(precision[1])
```

If you want to use it with `tf.estimator.Estimator`, add to your `model_fn`

```python
metrics = {
'precision': precision,
'recall': recall,
'f1': f1,
'f2': f2
}
# For Tensorboard
for metric_name, metric in metrics.items():
tf.summary.scalar(metric_name, metric[1])

if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(
mode, loss=loss, eval_metric_ops=metrics)
```