An open API service indexing awesome lists of open source software.

https://github.com/guokr/torchctr

CTR Prediction on PyTorch
https://github.com/guokr/torchctr

classfication ctr ctr-prediction deep-learning factorization-machine pytorch

Last synced: about 1 month ago
JSON representation

CTR Prediction on PyTorch

Awesome Lists containing this project

README

        



PyPI


PyPI - License


Install |
Getting Started |
Documentation |

TorchCTR

TorchCTR is a scalable and easy-to-use ML package for CTR (Click Through Rate) prediction and ranking in recommender system with Facebook PyTorch.

### Classic Models

- [x] [Logistic Regression](https://en.wikipedia.org/wiki/Logistic_regression)
- [x] [Factorization Machine by Osaka Univ.](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf)
- [x] [Field-aware Factorization Machine by Criteo, CMU & NTU](https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf)

### Deep Learning Models

- [x] [Wide and Deep by Google](https://arxiv.org/abs/1606.07792)
- [x] [DeepFM by Huawei & HIT](https://arxiv.org/abs/1703.04247)
- [x] [Neural Factorization Machine by NUS](https://arxiv.org/pdf/1708.05027.pdf)
- [x] [Field-aware Neural Factorization Machine](https://arxiv.org/abs/1902.09096)
- [ ] [Factorization-supported Neural Network](https://arxiv.org/abs/1601.02376)
- [ ] [Product-based Neural Network](https://arxiv.org/abs/1611.00144)
- [ ] [Attentional Factorization Machine](https://arxiv.org/abs/1708.04617)
- [ ] [Deep and Cross Network](https://arxiv.org/abs/1708.05123)
- [ ] [Deep Interest Network](https://arxiv.org/abs/1706.06978)
- [ ] [eXtreme Deep Factorization Machine](https://arxiv.org/abs/1803.05170)

Install

`pip install torchctr --user`

Getting Started

please check exmaples/

Documentation

[Official Documentation](https://guokr.github.io/TorchCTR/)