An open API service indexing awesome lists of open source software.

https://github.com/gurpreetkaurjethra/advanced_rag

Advanced Retrieval-Augmented Generation (RAG) through practical notebooks, using the power of the Langchain, OpenAI GPTs ,META LLAMA3 , Agents.
https://github.com/gurpreetkaurjethra/advanced_rag

agent chatgpt genai generative-ai langchain large-language-models llama3 llm llms nlp openai rag retrieval-augmented

Last synced: 5 months ago
JSON representation

Advanced Retrieval-Augmented Generation (RAG) through practical notebooks, using the power of the Langchain, OpenAI GPTs ,META LLAMA3 , Agents.

Awesome Lists containing this project

README

        

# 🌟Advanced RAG💯💫🔥
Advanced Retrieval-Augmented Generation (RAG) through practical notebooks, using the power of the Langchain, OpenAI GPTs ,META LLAMA3, Agents.
Dive into the world of advanced language understanding with `Advanced_RAG`. These Python notebooks offer a guided tour of Retrieval-Augmented Generation (RAG) using the Langchain framework, perfect for enhancing Large Language Models (LLMs) with rich, contextual knowledge.

## Architecture Flows⭐
### 🔥Basic RAG :
Understand the journey of a query through RAG, from user input to the final generated response, all depicted in a clear, visual flow.

![RAG_User_Flow](https://github.com/GURPREETKAURJETHRA/Advanced_RAG/blob/main/img/RAG_User_Flow.jpg)

### 🌟Advanced RAG Techniques :
Explore the intricate components that make up an advanced RAG system, from query construction to generation.
![Advanced RAG Components](https://github.com/GURPREETKAURJETHRA/Advanced_RAG/blob/main/img/Advanced%20RAG%20Components.png)

### 02. Multi Query Retriever :
Get to grips with the Multi Query Retriever structure, which enhances the retrieval process by selecting the best responses from multiple sources.
![MQR](https://github.com/GURPREETKAURJETHRA/Advanced_RAG/blob/main/img/Multi%20Query%20Retriever.jpg)

### 06. Self-Reflection-RAG :
![self-Rag](https://github.com/GURPREETKAURJETHRA/Advanced_RAG/blob/main/img/self%20rag.png)

### 07. Agentic RAG :
![download](https://github.com/GURPREETKAURJETHRA/Advanced_RAG/blob/main/img/agentic%20rag.png)

### 08. Adaptive Agentic RAG :
![adaptive_rag_agent](https://github.com/GURPREETKAURJETHRA/Advanced_RAG/blob/main/img/adaptive%20rag%20agent.png)

### 09. Corrective Agentic RAG :
![correctiveRAG](https://github.com/GURPREETKAURJETHRA/Advanced_RAG/blob/main/img/corrective%20rag.png)

### 10. LLAMA 3 Agentic RAG Local:
![LLAMA3_AGent](https://github.com/GURPREETKAURJETHRA/Advanced_RAG/blob/main/img/Llama3_Agent.png)

## 📚Notebooks Overview📝💫
Below is a detailed overview of each notebook present in this repository:

- **01_Introduction_To_RAG.ipynb**
- _Basic process of building RAG app(s)_
- **02_Query_Transformations.ipynb**
- _Techniques for Modifying Questions for Retrieval_
- **03_Routing_To_Datasources.ipynb**
- _Create Routing Mechanism for LLM to select the correct data Source_
- **04_Indexing_To_VectorDBs.ipynb**
- _Various Indexing Methods in the Vector DB_
- **05_Retrieval_Mechanisms.ipynb**
- _Reranking, RaG Fusion, and other Techniques_
- **06_Self_Reflection_Rag.ipynb**
- _RAG that has self-reflection / self-grading on retrieved documents and generations._
- **07_Agentic_Rag.ipynb**
- _RAG that has agentic Flow on retrieved documents and generations._
- **08_Adaptive_Agentic_Rag.ipynb**
- _RAG that has adaptive agentic Flow._
- **09_Corrective_Agentic_Rag.ipynb**
- _RAG that has corrective agentic Flow on retrieved documents and generations._
- **10_LLAMA_3_Rag_Agent_Local.ipynb**
- _LLAMA 3 8B Agent Rag that works Locally._

Enhance your LLMs with the powerful combination of RAG and Langchain for more informed and accurate natural language generation.