Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gustavla/fractalnet
FractalNet: A fractal-based neural network architecture
https://github.com/gustavla/fractalnet
Last synced: 8 days ago
JSON representation
FractalNet: A fractal-based neural network architecture
- Host: GitHub
- URL: https://github.com/gustavla/fractalnet
- Owner: gustavla
- License: bsd-3-clause
- Created: 2016-06-14T20:30:02.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2017-10-11T10:58:44.000Z (about 7 years ago)
- Last Synced: 2024-08-01T22:49:53.946Z (3 months ago)
- Language: C++
- Homepage: http://people.cs.uchicago.edu/~larsson/fractalnet/
- Size: 9.77 KB
- Stars: 150
- Watchers: 21
- Forks: 46
- Open Issues: 5
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
- awesome-image-classification - unofficial-caffe : https://github.com/gustavla/fractalnet
- awesome-image-classification - unofficial-caffe : https://github.com/gustavla/fractalnet
README
FractalNet
==========A fractal-based neural network architecture:
* `Project page `__
* `arXiv paper `__Drop-path
---------
We provide a reference implementation for the elementwise-mean layer with local
drop-path. There is still no public release of local+global, but we suggest
implementing this through tying weights.Caffe
~~~~~
See the ``caffe`` directory for code and more information.Fractal pattern generation
--------------------------
Wiring up a fractal network manually would take hours, so we provide simple
Python scripts that will do it for you. See the ``generation`` directory for
code and more information.Data augmentation
-----------------
We use a Python layer in Caffe to implement data augmentation. It is not yet
available here.Cite
----
If this is useful to you, please consider citing us::@article{larsson2016fractalnet,
title={FractalNet: Ultra-Deep Neural Networks without Residuals},
author={Larsson, Gustav and Maire, Michael and Shakhnarovich, Gregory},
journal={arXiv preprint arXiv:1605.07648},
year={2016}
}