Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gvolpe/split-morphism
:curly_loop: Split Morphisms
https://github.com/gvolpe/split-morphism
category category-theory epimorphism haskell lens monomorphism morphism optics prism
Last synced: 3 months ago
JSON representation
:curly_loop: Split Morphisms
- Host: GitHub
- URL: https://github.com/gvolpe/split-morphism
- Owner: gvolpe
- License: bsd-3-clause
- Created: 2019-02-10T02:19:52.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2020-02-08T00:49:15.000Z (almost 5 years ago)
- Last Synced: 2024-10-11T23:45:40.430Z (3 months ago)
- Topics: category, category-theory, epimorphism, haskell, lens, monomorphism, morphism, optics, prism
- Language: Haskell
- Homepage: http://hackage.haskell.org/package/split-morphism-0.1.0.0
- Size: 33.2 KB
- Stars: 11
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: ChangeLog.md
- License: LICENSE
Awesome Lists containing this project
README
split-morphism
==============[![CircleCI](https://circleci.com/gh/gvolpe/split-morphism/tree/master.svg?style=svg)](https://circleci.com/gh/gvolpe/split-morphism/tree/master)
Experimental package representing [Split Epimorphism](https://ncatlab.org/nlab/show/split+epimorphism)s and [Split Monomorphism](https://ncatlab.org/nlab/show/split+monomorphism)s as presented by [Rob Norris (@tpolecat)](https://github.com/tpolecat) at [Scala eXchange 2018](https://skillsmatter.com/skillscasts/11626-keynote-pushing-types-and-gazing-at-the-stars).
Further development (in Scala) can be found in the [Gemini Ocs3
repository](https://github.com/gemini-hlsw/ocs3/tree/v0.11.13/modules/core/shared/src/main/scala/gem/optics).## Non-Injective Optics
Standard 2-way optics deal with **invertible** mappings. `Iso a b` says that `a` and `b` are equal, so round-trips in either direction are identities. `Prism a b` says that there is some *subset* of `a` that is equal to `b`.
If we loosen the requirement that types be the same size we get a different kind of mapping, where the large type is squeezed into the small type in one direction or the other. An example is `Int ⟺ ByteString` by the standard widening/narrowing conversions. Note that the round-trip starting at `ByteString` is an identity, but the round-up starting at `Int` is merely **idempotent**: the first round-trip "normalizes" an `Int` into `ByteString` range and thereafter the round-trip is an identity.
This [phenomenon](https://ncatlab.org/nlab/show/split+epimorphism) is a thing, called a **split monomorphism** or a **split epimorphism** depending on which side is bigger. Note that every `Iso` is trivially a split where the idempotent round-trip happens to be an identity.
When we compose a `SplitMono` and a `SplitEpi` end-to-end in either direction we end up with a situation where neither round-trip is necessarily an identity but both are idempotent. I'm calling this a `Wedge` for lack of a better idea. Splits are trivially wedges where one of the idempotent round-trips happens to be an identity.
A `Format` is a weaker `Prism` where a *subset* of `a` forms a split epi with `b`. Every `Prism` is a `Format` where the split epi happens to be an `Iso`; and every `SplitEpi` forms a `Prism` where the subset of `a` is `a` itself.
```
Wedge a b
a ? b│ Format a b
┌────────┴────────┐ ∃ a ⊂ a | a > b
│ │
│
SplitMono a b SplitEpi a b ─────┤
a < b a > b ││ │ Prism a b
└────────┬────────┘ ∃ a ⊂ a | a = b
│ │
│
Iso a b ─────────────────┘
a = b
```Adapted from the [Scala
version](https://github.com/gemini-hlsw/ocs3/blob/v0.11.13/modules/core/shared/src/main/scala/gem/optics/README.md).## Examples
It is recommended to have qualified import of the modules, otherwise you might have some issues..
### Split Epimorphism
```
ghci> import qualified Control.Lens.SplitEpi as SE
ghci> import Data.Maybe (fromMaybe)
ghci> import Text.Read (readMaybe)
ghci> let epi = SE.SplitEpi (fromMaybe 0 . readMaybe) show :: SE.SplitEpi String Integer
ghci> SE.reverseGet epi 123
"123"
ghci> SE.get epi "foo"
0
ghci> SE.get epi "87"
87
```### Split Monomorphism
```
ghci> import qualified Control.Lens.SplitMono as SM
ghci> let mono = SM.SplitMono toInteger fromInteger :: SM.SplitMono Int Integer
ghci> SM.get mono 1234567890123456789
1234567890123456789
ghci> SM.reverseGet mono 1234567890123456789
1234567890123456789
ghci> SM.reverseGet mono 123456789012345678901234
-7269072992350064654
```### Format
```
ghci> import qualified Control.Lens.Format as F
ghci> let format = F.Format (\n -> if n > 0 then Just (n `mod` 2 == 0) else Nothing) (\n -> if n then 2 else 1) :: F.Format Int Bool
ghci> F.getMaybe format 0
Nothing
ghci> F.getMaybe format 1
Just False
ghci> F.getMaybe format 2
Just True
ghci> F.getMaybe format 3
Just False
ghci> F.reverseGet format True
2
ghci> F.reverseGet format False
1
```### Wedge
```
ghci> import qualified Control.Lens.SplitEpi as SE
ghci> import qualified Control.Lens.SplitMono as SM
ghci> import qualified Control.Lens.SplitMorphism as S
ghci> import qualified Control.Lens.Wedge as W
ghci> let epi = SE.SplitEpi fromInteger toInteger :: SE.SplitEpi Integer Int
ghci> let mono = SM.SplitMono toInteger fromInteger :: SM.SplitMono Int Integer
ghci> let wedge = epi `S.composeSplitEpiMono` mono :: Wedge Integer Integer
ghci> W.get wedge 123
123
ghci> W.reverseGet wedge 123
123
ghci> W.get wedge 123456789123456789000
-5670419392510072312
ghci> W.reverseGet wedge 123456789123456789000
-5670419392510072312
ghci> W.normalizeB wedge 123
123
ghci> W.normalizeA wedge 123
123
```### Invariant mapping
All the data types exposed by this library, namely `SplitEpi`, `SplitMono`, `Format` and `Wedge`, have instances of `InvariantFunctor`.
#### SplitEpi
```
ghci> import Data.Functor.Invariant
ghci> let epi' = invmap (+1) (+2) epi
ghci> Se.reverseGet epi' 123
"125"
ghci> SE.get epi "foo"
1
ghci> SE.get epi' "87"
88
```#### Format
```
ghci> import Data.Functor.Invariant
ghci> let format' = invmap not not format
ghci> F.reverseGet format' True
1
ghci> F.reverseGet format' False
2
```### Conversions from Prism and Iso
#### A `Prism` can be converted into a `Format`:
```
ghci> import Control.Lens
ghci> import qualified Control.Lens.Format as F
ghci> import GHC.Natural
ghci> :{
ghci> | nat :: Prism' Integer Natural
ghci> | nat = prism toInteger $ \ i ->
ghci> | if i < 0
ghci> | then Left i
ghci> | else Right (fromInteger i)
ghci> | :}
ghci> let f = F.fromPrism nat :: Format Integer Natural
```#### An `Iso` can be converted into a `Format`, `SplitEpi`, `SplitMono` or `Wedge`:
```
ghci> import Control.Lens
ghci> import qualified Control.Lens.SplitEpi as SE
ghci> import qualified Control.Lens.SplitMono as SM
ghci> let nonIso = non 5 :: Iso' (Maybe Int) Int
ghci> let epi = SE.fromIso nonIso :: SplitEpi (Maybe Int) Int
ghci> let mono = SM.fromIso nonIso :: SplitMono (Maybe Int) Int
```