An open API service indexing awesome lists of open source software.

https://github.com/haasonsaas/parakeet-podcast-processor

šŸŽ™ļø P³: Lightning-fast podcast processing with Apple Silicon optimization and local LLMs. Parakeet MLX transcription + Ollama analysis = structured podcast summaries in minutes. 100% local, no API keys required.
https://github.com/haasonsaas/parakeet-podcast-processor

apple-silicon audio-processing local-llm mlx ollama parakeet podcast podcast-processing rss transcription

Last synced: 5 months ago
JSON representation

šŸŽ™ļø P³: Lightning-fast podcast processing with Apple Silicon optimization and local LLMs. Parakeet MLX transcription + Ollama analysis = structured podcast summaries in minutes. 100% local, no API keys required.

Awesome Lists containing this project

README

          

# Parakeet Podcast Processor (P³)

**Automated podcast processing with Apple Silicon optimization and local LLMs**

Transform podcasts into structured summaries using cutting-edge Apple Silicon ML acceleration.

> **Inspired by [Tomasz Tunguz](https://tomtunguz.com)**'s innovative podcast processing system described in his "How I AI" interview. This implementation builds on his pioneering work in automated podcast analysis for venture capital and business intelligence.

## ⚔ Key Features

- **šŸŽ§ Smart Audio Processing**: RSS feed monitoring + ffmpeg normalization
- **šŸš€ Lightning Fast Transcription**: Parakeet MLX (30x faster than Whisper on Apple Silicon)
- **🧠 Local LLM Analysis**: Ollama integration for structured summarization
- **āœļø AI Blog Generation**: Iterative writing with AP English teacher grading system
- **šŸ“± Social Media Posts**: Auto-generate Twitter and LinkedIn content
- **šŸ’¾ Efficient Storage**: DuckDB for fast queries and analysis
- **šŸ“Š Rich Outputs**: Markdown and JSON exports with topics, themes, quotes, and company mentions
- **šŸ”’ 100% Local**: No API keys required, complete privacy

## 🚦 Quick Start

```bash
# Prerequisites: macOS with Apple Silicon + ffmpeg + Ollama
brew install ffmpeg
# Install Ollama from https://ollama.com, then: ollama pull llama3.2

# Setup P³
python3 -m venv venv && source venv/bin/activate
pip install -e .
p3 init

# Configure feeds in config/feeds.yaml
# Then run the complete pipeline:
p3 fetch && p3 transcribe && p3 digest && p3 export

# Generate blog posts from digest (Tunguz's innovation):
p3 write --topic "AI's Impact on Software Development"

# Or run the demo script:
python demo.py
```

## ⚔ Performance

- **Audio Download**: ~30 seconds per episode
- **Parakeet Transcription**: 60 minutes audio → 1 second processing
- **Ollama Analysis**: Full transcript → structured summary in ~10 seconds
- **Total Pipeline**: ~1 minute for complete podcast processing

## šŸ—ļø Architecture

```
RSS → ffmpeg → Parakeet MLX → Ollama → DuckDB → Export
```

**Optimized Stack:**
- **Audio**: ffmpeg normalization for consistent quality
- **Transcription**: Parakeet MLX (Apple Silicon optimized ASR)
- **Analysis**: Ollama (local Llama3.2 for structured extraction)
- **Storage**: DuckDB (fast analytical queries)

## šŸ“Š Output Example

**Generated Markdown Digest:**
```markdown
# Podcast Digest - 2025-08-25

## Test Podcast

### All About That Bass

**Summary:** The Roland TR-808 drum machine revolutionized hip-hop and electronic music...

**Key Topics:**
- Roland TR-808 drum machine
- Hip-hop music evolution
- Electronic music production

**Notable Quotes:**
> "I really feel the 808 kick drum was one of the first things that started shattering the rules..."

**Companies Mentioned:**
- Roland Corporation
```

## šŸ› ļø Commands

- `p3 init` - Initialize directories and database
- `p3 fetch` - Download episodes from RSS feeds
- `p3 transcribe` - Convert audio to text with Parakeet MLX
- `p3 digest` - Generate structured summaries with Ollama
- `p3 export` - Export daily digests (markdown/JSON)
- `p3 write --topic "Your Topic"` - Generate blog posts with AP English grading
- `p3 status` - Show processing pipeline status

## šŸ”§ Configuration

Edit `config/feeds.yaml` to add your podcast feeds:

```yaml
feeds:
- name: "Your Podcast"
url: "https://example.com/feed.xml"
category: "tech"

settings:
max_episodes_per_feed: 5

# Transcription (Apple Silicon optimized)
parakeet_enabled: true
parakeet_model: "mlx-community/parakeet-tdt-0.6b-v2"

# LLM Processing (100% Local)
llm_provider: "ollama"
llm_model: "llama3.2:latest"
```

## šŸ“‚ Project Structure

```
p3/
ā”œā”€ā”€ p3/ # Core package
│ ā”œā”€ā”€ database.py # DuckDB storage layer
│ ā”œā”€ā”€ downloader.py # RSS + audio download with ffmpeg
│ ā”œā”€ā”€ transcriber.py # Parakeet MLX + Whisper fallback
│ ā”œā”€ā”€ cleaner.py # Ollama LLM analysis
│ ā”œā”€ā”€ exporter.py # Markdown/JSON generation
│ └── cli.py # Command-line interface
ā”œā”€ā”€ config/feeds.yaml # Podcast feed configuration
ā”œā”€ā”€ data/ # Audio files + DuckDB database
ā”œā”€ā”€ exports/ # Generated digests
ā”œā”€ā”€ digest_YYYY-MM-DD.md # Generated markdown digests
└── digest_YYYY-MM-DD.json # Generated JSON digests
```

## šŸš€ Why P³?

**Performance**: Parakeet MLX delivers 30x speed improvement over Whisper on Apple Silicon

**Privacy**: 100% local processing - your podcast data never leaves your machine

**Quality**: State-of-the-art ASR + structured LLM analysis produces rich, actionable summaries

**Efficiency**: Process hours of podcasts in minutes with optimized pipeline

Perfect for researchers, journalists, content creators, or anyone who needs to efficiently process large volumes of podcast content.

## šŸ™ **Attribution**

This implementation is inspired by and builds upon the innovative work of **[Tomasz Tunguz](https://tomtunguz.com)**, founder of Theory Ventures, who pioneered many of these techniques for automated podcast analysis in venture capital. His "AP English teacher grading system" for iterative AI writing and multi-feed podcast processing approach formed the foundation for several features in this system.

**Key innovations from Tunguz's system:**
- āœļø Blog post generation with AP English teacher grading (91/100 target)
- šŸ”„ Iterative writing improvement loops
- šŸ“± Social media post generation
- šŸ¢ Company/startup extraction for CRM integration
- šŸ“Š Investment thesis generation from podcast insights

*Source: Tomasz Tunguz interview on "How I AI" podcast*