https://github.com/habedi/rag-playground
A playground for learning about retrieval augmented generation (RAG)
https://github.com/habedi/rag-playground
generative-ai llms nlp python rag retrieval-augmented-generation semantic-search vector-database
Last synced: 7 months ago
JSON representation
A playground for learning about retrieval augmented generation (RAG)
- Host: GitHub
- URL: https://github.com/habedi/rag-playground
- Owner: habedi
- License: mit
- Created: 2024-04-12T15:30:20.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2025-02-18T10:44:57.000Z (8 months ago)
- Last Synced: 2025-02-18T11:36:06.618Z (8 months ago)
- Topics: generative-ai, llms, nlp, python, rag, retrieval-augmented-generation, semantic-search, vector-database
- Language: Jupyter Notebook
- Homepage:
- Size: 15.3 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# A Playground for RAG-related Stuff
[](https://github.com/habedi/rag-playground/actions/workflows/tests.yml)
[](https://github.com/habedi/rag-playground/blob/main/LICENSE)
[](https://www.python.org/)This is a playground repository for experimenting and learning about the
[retrieval augmented generation (RAG)](https://aws.amazon.com/what-is/retrieval-augmented-generation/) paradigm.Overview of a simple RAG pipeline:
## Poetry
#### Installation
```
pipx install poetry # or uv tool install poetry
```#### Creating the Environment
```bash
poetry install
```## Notebooks
| Index | Notebook | Description |
|-------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1 | [embedding_and_indexing_documents](notebooks/basics/embedding_and_indexing_documents.ipynb) | This notebook demonstrates how to embed and index documents. |## Papers
| Index | Title | Authors | Year | Link |
|-------|---------------------------------------------------------------------------------|--------------|------|-------------------------------------------|
| 1 | Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks | Lewis et al. | 2020 | [arXiv](https://arxiv.org/abs/2005.11401) |
| 2 | Retrieval-Augmented Generation for Large Language Models: A Survey | Gao et al. | 2023 | [arXiv](https://arxiv.org/abs/2312.10997) |
| 3 | A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models | Fan et al. | 2024 | [arXiv](https://arxiv.org/abs/2405.06211) |## License
Most files in this repository are licensed under the MIT License---see the [LICENSE](LICENSE) file for details.