https://github.com/hahnec/optimizay
collection of numerical optimization methods
https://github.com/hahnec/optimizay
conjugate-gradient descent expectation-maximization gauss-newton gauss-newton-method gradient implementation ipynb levenberg-marquardt levenberg-marquardt-algorithm minimization minimization-algorithm newton newton-raphson newton-raphson-algorithm optimization optimization-algorithms root-finding root-finding-methods stochastic
Last synced: 3 months ago
JSON representation
collection of numerical optimization methods
- Host: GitHub
- URL: https://github.com/hahnec/optimizay
- Owner: hahnec
- Created: 2022-05-04T22:52:50.000Z (about 3 years ago)
- Default Branch: master
- Last Pushed: 2024-07-06T19:19:59.000Z (11 months ago)
- Last Synced: 2025-02-01T10:41:37.938Z (4 months ago)
- Topics: conjugate-gradient, descent, expectation-maximization, gauss-newton, gauss-newton-method, gradient, implementation, ipynb, levenberg-marquardt, levenberg-marquardt-algorithm, minimization, minimization-algorithm, newton, newton-raphson, newton-raphson-algorithm, optimization, optimization-algorithms, root-finding, root-finding-methods, stochastic
- Language: HTML
- Homepage:
- Size: 32 MB
- Stars: 6
- Watchers: 1
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Optimizay
This repository contains a collection of mathematical optimization algorithms demonstrating underlying concepts in an interactive manner using Jupyter notebooks with Binder support:
[](https://mybinder.org/v2/gh/hahnec/optimizay/master?urlpath=lab)
The content list is given below and subject to further expansion:
1. [Univarite Newton-Raphson Minimization](01_univar_newton.ipynb)
2. [Bivariate Gradient Descent vs. Newton-Raphson](02_bivar_newton_vs_descent.ipynb)
3. [Bivariate Newton Root-finding](03_bivar_newton_root.ipynb)
4. [Conjugate Gradient](04_conjugate_gradient.ipynb)
5. [Gauss-Newton vs. Levenberg-Marquardt](05_gna_vs_lma.ipynb)
6. [Stochastic Gradient Descent (SGD)](06_stochastic_gradient.ipynb)
![]()
7. [Feature Engineering - Titanic](07_feat_eng_titanic.ipynb)8. [Expectation Maximization](08_em.ipynb)
Credits
=======### Author
[Christopher Hahne](http://www.christopherhahne.de)