Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/han-cai/PathLevel-EAS

Path-Level Network Transformation for Efficient Architecture Search, in ICML 2018.
https://github.com/han-cai/PathLevel-EAS

Last synced: about 1 month ago
JSON representation

Path-Level Network Transformation for Efficient Architecture Search, in ICML 2018.

Awesome Lists containing this project

README

        

# Path-Level Network Transformation for Efficient Architecture Search

Code for the paper [Path-Level Network Transformation for Efficient Architecture Search](https://arxiv.org/abs/1806.02639) in ICML 2018.

# Reference
```bash
@article{cai2018path,
title={Path-Level Network Transformation for Efficient Architecture Search},
author={Cai, Han and Yang, Jiacheng and Zhang, Weinan and Han, Song and Yu, Yong},
journal={arXiv preprint arXiv:1806.02639},
year={2018}
}
```

## Related Projects
- [Efficient Architecture Search by Network Transformation](https://arxiv.org/abs/1707.04873) in AAAI 2018, [Code](https://github.com/han-cai/EAS).

## Dependencies

* Python 3.6
* Pytorch 0.3.1

## Results

### CIFAR-10

| Model | Params | Test error (%) |
| ----------------------- | ------------- | ----- |
| [TreeCell-A with DenseNet (N=16, k=48, G=2)](https://drive.google.com/file/d/19OzTjozcJlbP4SZJXPiuQfZgklcs7nCX/view?usp=sharing) | 13.1M | 3.35 |
| [TreeCell-A with PyramidNet (N=18, alpha=84, G=2)](https://drive.google.com/open?id=1TgBI5y_j3YjTemqCalOPn3dA7CChZ1bn) | 5.7M | 3.14 |
| [TreeCell-A with PyramidNet (N=18, alpha=84, G=2) + DropPath (600 epochs)](https://drive.google.com/open?id=1AIwRxNrpX9N2GcsB6PXVfKgYaQnxKDF5) | 5.7M | 2.99 |
| [TreeCell-A with PyramidNet (N=18, alpha=84, G=2) + DropPath + Cutout (600 epochs)](https://drive.google.com/open?id=1BFcB9iaCWX8QgmhbGwqc3ZRZ9d61CJpo) | 5.7M | 2.49 |
| [TreeCell-A with PyramidNet (N=18, alpha=150, G=2) + DropPath + Cutout (600 epochs)](https://drive.google.com/open?id=1WbI4fE-m7f2leLR8nJMC1Cby4fWHFRUa) | 14.3M | 2.30 |

For checking these networks, please download the corresponding model files and run the following command under the folder of **code/CIFAR**:
```bash
$ python3 run_exp.py --path
```

For example, by running
```bash
$ python3 run_exp.py --path ../../Nets/CIFAR10#PyramidTreeCellA#N=18_alpha=150#600#cutout
```
you will get
```bash
test_loss: 0.092100 test_acc: 97.700000
```

### ImageNet

| Model | Multi-Add | Top-1 error (%) |
| ----------------------- | ------------- | ----- |
| [TreeCell-B with CondenseNet (G1=4, G3=8)](https://drive.google.com/open?id=1BD3VdUzStaXiipA8oXM3SPWBUnuPtfjk)| 594M | 25.4 |

Please refer to the file **code/ImageNet/scripts.sh**.

## Architecture Search
For setting up your environment to run architecture search experiments, please refer to my previous [repository](https://github.com/han-cai/EAS/tree/master/code).