Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hankcs/cs224n
CS224n: Natural Language Processing with Deep Learning Assignments Winter, 2017
https://github.com/hankcs/cs224n
cs224n deep-learning natural-language-processing rnn tensorflow word2vec
Last synced: 6 days ago
JSON representation
CS224n: Natural Language Processing with Deep Learning Assignments Winter, 2017
- Host: GitHub
- URL: https://github.com/hankcs/cs224n
- Owner: hankcs
- License: gpl-3.0
- Created: 2017-06-17T09:01:42.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-10-15T01:51:25.000Z (over 6 years ago)
- Last Synced: 2025-02-08T19:06:50.396Z (13 days ago)
- Topics: cs224n, deep-learning, natural-language-processing, rnn, tensorflow, word2vec
- Language: Python
- Homepage: http://www.hankcs.com/tag/cs224n/
- Size: 46 MB
- Stars: 674
- Watchers: 27
- Forks: 273
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# CS224n
CS224n: Natural Language Processing with Deep Learning Assignments Winter, 2017#### Requirements
* Python 2.7
* TensorFlow r1.2## Assignment #1
1. Softmax
2. Neural Network Basics
3. word2vec

4. Sentiment Analysis

## Assignment #2
1. Tensorflow Softmax
2. Neural Transition-Based Dependency Parsing```
924/924 [==============================] - 49s - train loss: 0.0631
Evaluating on dev set - dev UAS: 88.54
New best dev UAS! Saving model in ./data/weights/parser.weights
================================================================================
TESTING
================================================================================
Restoring the best model weights found on the dev set
Final evaluation on test set - test UAS: 88.92
Writing predictions
Done!
```3. Recurrent Neural Networks: Language Modeling
## Assignment #3
1. A window into NER
```
DEBUG:Token-level confusion matrix:
go\gu PER ORG LOC MISC O
PER 2968 26 84 16 55
ORG 147 1621 131 65 128
LOC 48 88 1896 26 36
MISC 37 40 54 1030 107
O 42 46 18 39 42614
DEBUG:Token-level scores:
label acc prec rec f1
PER 0.99 0.92 0.94 0.93
ORG 0.99 0.89 0.77 0.83
LOC 0.99 0.87 0.91 0.89
MISC 0.99 0.88 0.81 0.84
O 0.99 0.99 1.00 0.99
micro 0.99 0.98 0.98 0.98
macro 0.99 0.91 0.89 0.90
not-O 0.99 0.89 0.87 0.88
INFO:Entity level P/R/F1: 0.82/0.85/0.84
```2. Recurrent neural nets for NER
```
DEBUG:Token-level confusion matrix:
go\gu PER ORG LOC MISC O
PER 2987 32 47 12 71
ORG 136 1684 90 70 112
LOC 39 83 1907 21 44
MISC 43 45 47 1031 102
O 36 56 15 34 42618
DEBUG:Token-level scores:
label acc prec rec f1
PER 0.99 0.92 0.95 0.93
ORG 0.99 0.89 0.80 0.84
LOC 0.99 0.91 0.91 0.91
MISC 0.99 0.88 0.81 0.85
O 0.99 0.99 1.00 0.99
micro 0.99 0.98 0.98 0.98
macro 0.99 0.92 0.89 0.91
not-O 0.99 0.90 0.88 0.89
INFO:Entity level P/R/F1: 0.85/0.86/0.85
```3. Grooving with GRUs



```
DEBUG:Token-level confusion matrix:
go\gu PER ORG LOC MISC O
PER 2920 41 57 12 119
ORG 101 1716 73 64 138
LOC 22 95 1908 16 53
MISC 37 45 53 1017 116
O 21 67 14 39 42618DEBUG:Token-level scores:
label acc prec rec f1
PER 0.99 0.94 0.93 0.93
ORG 0.99 0.87 0.82 0.85
LOC 0.99 0.91 0.91 0.91
MISC 0.99 0.89 0.80 0.84
O 0.99 0.99 1.00 0.99
micro 0.99 0.98 0.98 0.98
macro 0.99 0.92 0.89 0.90
not-O 0.99 0.91 0.88 0.89INFO:Entity level P/R/F1: 0.86/0.85/0.85
```4. Easter Egg Hunt!
- Run `python q3_gru.py dynamics` to unfold your candy eggs## References
CS224n official website
* http://web.stanford.edu/class/cs224n/index.html
Many code snippets come from
* https://github.com/rymc9384/DeepNLP_CS224N
* https://github.com/gxlzj/cs224n-hw3