Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hanwenzhu/primality-tests
Miller–Rabin primality test in Lean
https://github.com/hanwenzhu/primality-tests
lean lean4 primality-test theorem-proving
Last synced: about 2 months ago
JSON representation
Miller–Rabin primality test in Lean
- Host: GitHub
- URL: https://github.com/hanwenzhu/primality-tests
- Owner: hanwenzhu
- License: apache-2.0
- Created: 2023-12-18T04:21:08.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-12-30T01:25:36.000Z (about 1 year ago)
- Last Synced: 2024-08-09T14:09:00.809Z (6 months ago)
- Topics: lean, lean4, primality-test, theorem-proving
- Language: Lean
- Homepage:
- Size: 63.5 KB
- Stars: 5
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Primality tests in Lean
## Main definitions
Fast modular exponentiation
```lean
/-- Fast modular exponentiation, tail recursive -/
def pow {n : ℕ} (x : ZMod n) (m : ℕ) : ZMod ntheorem pow_eq {n : ℕ} (x : ZMod n) (m : ℕ) :
x.pow m = x ^ m
```Fermat probable primality
```lean
/-- `n` is a *Fermat probable prime* to base `a` if `a ^ (n - 1) = 1`. -/
def FPP (n : ℕ) (a : ZMod n) : Prop :=
a ^ (n - 1) = 1instance FPP.decidable {n : ℕ} {a : ZMod n} :
Decidable (FPP n a)/-- A prime is a Fermat probable prime to any nonzero base. -/
theorem FPP.of_prime {p : ℕ} [Fact p.Prime] {a : ZMod p} (ha : a ≠ 0) :
FPP p adef FPP.Carmichael (n : ℕ) : Prop :=
∀ a : (ZMod n)ˣ, FPP n a
```Strong probable primality
```lean
/-- `n` is a *strong probable prime* to base `a`, if `a ^ d = 1` or `∃ s < s', a ^ (2 ^ s * d) = -1`
where `d` is odd and `n - 1 = 2 ^ s' * d`. -/
def SPP (n : ℕ) (a : ZMod n) : Prop :=
a ^ oddPart (n - 1) = 1 ∨
∃ s : ℕ, s < val₂ (n - 1) ∧ a ^ (2 ^ s * oddPart (n - 1)) = -1/-- The algorithm that decides `SPP` in $O(\log^3 n)$. -/
instance SPP.decidable {n : ℕ} {a : ZMod n} :
Decidable (SPP n a)/-- A prime is a strong probable prime to any nonzero base. -/
theorem SPP.of_prime {p : ℕ} [Fact p.Prime] {a : ZMod p} (ha : a ≠ 0) :
SPP p a/-- The proportion of Miller–Rabin nonwitnesses of composite `n` is at most 1/4. -/
theorem SPP.card_SPP_of_not_prime {n : ℕ} [hn : n.AtLeastTwo] (ho : Odd n) (hnp : ¬n.Prime) :
Fintype.card {a // SPP n a} * 4 ≤ n - 1
```Miller–Rabin
```lean
/-- The *Miller–Rabin* primality test on input `n`, run `r` times. -/
def millerRabin {gen : Type*} [RandomGen gen] (g : gen) (n r : ℕ) :
Bool × gendef runMillerRabin (n r : ℕ) : IO Bool
```## Possible extensions
1. Show `millerRabin` has probability of correctness aribitrarily close to `1` when `r` large enough and the random generator `g` is uniform and independent enough
2. Verify Pratt, ECPP, Pocklington certificates (useful for proofs actually needing a particular large prime)
3. More primality tests: Euler/Euler–Jacobi, (strong) Lucas, Baillie–PSW, AKS
4. Format, docstrings, simplify / abstract lemmas from some long proofs## References
1. https://kconrad.math.uconn.edu/blurbs/ugradnumthy/carmichaelkorselt.pdf
2. https://kconrad.math.uconn.edu/blurbs/ugradnumthy/millerrabin.pdf
3. https://math.stackexchange.com/questions/487011/showing-that-a-homomorphism-between-groups-of-units-is-surjective
4. Of course, mathlib