Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/haofanwang/accurate-head-pose
Pytorch code for Hybrid Coarse-fine Classification for Head Pose Estimation
https://github.com/haofanwang/accurate-head-pose
head-pose-estimation headpose pytorch
Last synced: 8 days ago
JSON representation
Pytorch code for Hybrid Coarse-fine Classification for Head Pose Estimation
- Host: GitHub
- URL: https://github.com/haofanwang/accurate-head-pose
- Owner: haofanwang
- Created: 2019-01-30T09:59:07.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2020-09-22T22:49:30.000Z (about 4 years ago)
- Last Synced: 2023-03-05T11:44:07.001Z (over 1 year ago)
- Topics: head-pose-estimation, headpose, pytorch
- Language: Python
- Homepage:
- Size: 730 KB
- Stars: 96
- Watchers: 4
- Forks: 22
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# accurate-head-pose
We release the code of the [Hybrid Coarse-fine Classification for Head Pose Estimation](https://arxiv.org/abs/1901.06778), built on top of the [deep-head-pose](https://github.com/natanielruiz/deep-head-pose).
### Pretrained model
We provide pretrained model to reproduce the same result shown in the paper.[AFLW2000](https://pan.baidu.com/s/1y9q0JmnA-QxaORyn5fhPKQ), password: drmz
[AFLW](https://pan.baidu.com/s/1rj2xLINrabaqiIzvSKlGEg), password: yym5
[BIWI](https://pan.baidu.com/s/1bZXMdGiycX4T4u0VVofQXQ), password: 8qpc
For those who cannot have access to BaiduDisk, you can download pretrained models on [Google Drive](https://drive.google.com/drive/folders/1is55mbFHsAVbeStkIZf9LV4HdiSjJHd9?usp=sharing)
### Testing
Training and testing lists can be found in /tools, you need download corresonding dataset and update the path.
[AFLW2000 dataset](https://pan.baidu.com/s/1GMyAC0I_x79zXmXIegpaQg), password: xr6e```bash
python test_hopenet.py --gpu 0 --data_dir directory-path-for-dataset --filename_list filename-list --snapshot model --dataset dataset-name
```### TODO
Instructions for scripts
Better and better models
Videos and example demo### Cite this work
Haofan Wang, Zhenhua Chen and Yi Zhou "Hybrid coarse-fine classification for head pose estimation." arXiv:1901.06778, 2019. ([Download](https://arxiv.org/abs/1901.06778))
Biblatex entry:
@article{wang2019hybrid,
title={Hybrid coarse-fine classification for head pose estimation},
author={Wang, Haofan and Chen, Zhenghua and Zhou, Yi},
journal={arXiv preprint arXiv:1901.06778},
year={2019}
}
### Acknowledgement
Our hybrid classification network is plug-and-play on top of the [deep-head-pose](https://github.com/natanielruiz/deep-head-pose), but it could be extended to other classification tasks easily. We thank Nataniel Ruiz for releasing deep-head-pose-Pytorch codebase.