https://github.com/hariprasath-v/av-dataverse-hack---insurance-claim-prediction
Create a machine learning model to predict if the policyholder will file a claim in the next 6 months or not based on the set of car and policy features.
https://github.com/hariprasath-v/av-dataverse-hack---insurance-claim-prediction
analyticsvidhya classification exploratory-data-analysis f1-score matplotlib numpy pandas python randomforest-classification scikit-learn seaborn shap
Last synced: 3 months ago
JSON representation
Create a machine learning model to predict if the policyholder will file a claim in the next 6 months or not based on the set of car and policy features.
- Host: GitHub
- URL: https://github.com/hariprasath-v/av-dataverse-hack---insurance-claim-prediction
- Owner: hariprasath-v
- License: apache-2.0
- Created: 2022-11-16T14:14:18.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-11-16T14:33:21.000Z (over 2 years ago)
- Last Synced: 2025-01-13T01:45:00.325Z (4 months ago)
- Topics: analyticsvidhya, classification, exploratory-data-analysis, f1-score, matplotlib, numpy, pandas, python, randomforest-classification, scikit-learn, seaborn, shap
- Language: Jupyter Notebook
- Homepage:
- Size: 7.36 MB
- Stars: 0
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# AV-Dataverse-Hack---Insurance-Claim-Prediction
### Competition hosted on Analyticsvidhya
# About
### Create a machine learning model to predict if the policyholder will file a claim in the next 6 months or not based on the set of car and policy features.
### Final Competition score is 0.1749408983
### Leaderboard Rank is 38
### Evaluation Metric is F1-score.
### File information
* av-dataverse-hack-insurance-claim-prediction-eda.ipynb [](https://www.kaggle.com/hari141v/av-dataverse-hack-insurance-claim-prediction-eda)
#### Basic Exploratory Data Analysis
#### Packages Used,
* seaborn
* Pandas
* Numpy
* Matplotlib
* av-dataverse-hack-insurance-claim-prediction-model.ipynb [](https://www.kaggle.com/hari141v/av-dataverse-hack-insurance-claim-prediction-model)
#### Data Pre-processing and model.
#### Packages Used,
* Sklearn
* Pandas
* Numpy
* Matplotlib
* shap
#### Created Random forest classifier model and evaluated with f1-score.
#### [For more detailed information about the model.](https://github.com/hariprasath-v/AV-Dataverse-Hack---Insurance-Claim-Prediction/blob/main/Approach_AV%20Dataverse%20Hack%20-%20Insurance%20Claim%20Prediction.pdf)
### Random Forest Model Feature Importances
### Random Forest Model - SHAP Feature Importances
### SHAP Top feature influences the class 0
### SHAP Top feature influences the class 1
### Threshold Tuning Results - Optimal threshold: 0.0745, F1-score: 0.16929
