Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hariprasath-v/deloitte_presents_machine_learning_challenge_predict_loan_defaulters
A machine learning model that predicts the loan defaulter.
https://github.com/hariprasath-v/deloitte_presents_machine_learning_challenge_predict_loan_defaulters
catboost exploratory-data-analysis keras klib lightgbm optuna pandas python seaborn xgboost
Last synced: 25 days ago
JSON representation
A machine learning model that predicts the loan defaulter.
- Host: GitHub
- URL: https://github.com/hariprasath-v/deloitte_presents_machine_learning_challenge_predict_loan_defaulters
- Owner: hariprasath-v
- Created: 2021-12-29T10:44:30.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-01-15T14:56:44.000Z (about 3 years ago)
- Last Synced: 2024-11-13T15:54:31.880Z (3 months ago)
- Topics: catboost, exploratory-data-analysis, keras, klib, lightgbm, optuna, pandas, python, seaborn, xgboost
- Language: Jupyter Notebook
- Homepage:
- Size: 1.28 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# deloitte_presents_machine_learning_challenge_predict_loan_defaulters
### Competition hosted on MACHINEHACK
# About
### Build a machine learning model that predicts the loan defaulter.
#### Initially tried the ensemble models(catboost,xgboost,lightgbm).All the ensemble model's logloss values didn't show any difference. So i have tried neural network model and it gives smaller logloss value than the ensemble models and better leaderboard rank.
### Competition Public LB Rank: 146/465 & Private LB Rank: 146/465
### Final Score 0.3782
### Evaluation Metric is Logloss.
### File information
* deloitte_ml_challenge_predict_loan_defaulters.ipynb
### Packages Used,
* Sklearn
* catboost
* xgboost
* lgbm
* keras
* Pandas
* klib
* Numpy
* Matplotlib
* Optuna
* shap
### Basic Exploratory Data Analysis
### Created Catboost classifier model and tune the hyperparameters with the optuna framework.
### Created XGboost classifier model and tune the hyperparameters with the optuna framework.
### Created Lightgbm classifier model and tune the hyperparameters with the optuna framework.
### Model interpretation with shap
### Created keras neural net model
### Model Comparison
### Feature Importance Catboost
![Alt text](https://github.com/hariprasath-v/deloitte_presents_machine_learning_challenge_predict_loan_defaulters/blob/main/Catboost_Feature_Importance_Plot.png)
### Feature Importance XGboost
![Alt text](https://github.com/hariprasath-v/deloitte_presents_machine_learning_challenge_predict_loan_defaulters/blob/main/XGBoost_Feature_Importance_Plot.png)
### Feature Importance Lightgbm
![Alt text](https://github.com/hariprasath-v/deloitte_presents_machine_learning_challenge_predict_loan_defaulters/blob/main/LGBM_Feature_Importance_Plot.png)
### Model's Validation Logloss comparison
![Alt text](https://github.com/hariprasath-v/deloitte_presents_machine_learning_challenge_predict_loan_defaulters/blob/main/Model's_Validation-Logloss_Comparison.png)