Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hariprasath-v/dphi-data-sprint-52---covid-19-sars-b-cell-epitope-prediction
Predicting epitope regions using a machine learning model
https://github.com/hariprasath-v/dphi-data-sprint-52---covid-19-sars-b-cell-epitope-prediction
catboost optuna pandas python shap
Last synced: 5 days ago
JSON representation
Predicting epitope regions using a machine learning model
- Host: GitHub
- URL: https://github.com/hariprasath-v/dphi-data-sprint-52---covid-19-sars-b-cell-epitope-prediction
- Owner: hariprasath-v
- Created: 2021-11-02T04:18:05.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-01-15T14:46:33.000Z (about 3 years ago)
- Last Synced: 2024-11-13T15:54:31.618Z (2 months ago)
- Topics: catboost, optuna, pandas, python, shap
- Language: Jupyter Notebook
- Homepage:
- Size: 240 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Dphi-Data-Sprint-52---COVID-19-SARS-B-cell-Epitope-Prediction
# About
### Predicting epitope regions is beneficial for the design and development of vaccines aimed to induce antigen-specific antibody production.
### Competition hosted on Dphi
### Competition Leaderboard Rank - 2
### Evaluation Metric is F1 Score.
### File information
* Data_Sprint_52_COVID_19_SARS_B_cell_Epitope_Prediction.ipynb
### Packages Used,
* Sklearn
* catboost
* Pandas
* Numpy
* Matplotlib
* Optuna
* shap
### Created Catboost classifier model and tune the hyperparameters with the optuna framework.
### Model interpretation with shap
### Model accuracy score is 70.0699
### Feature Importance![Alt text](https://github.com/hariprasath-v/Dphi-Data-Sprint-52---COVID-19-SARS-B-cell-Epitope-Prediction/blob/main/Feature%20%20Importance.png)
### Hyperparameter Importance
![Alt text](https://github.com/hariprasath-v/Dphi-Data-Sprint-52---COVID-19-SARS-B-cell-Epitope-Prediction/blob/main/Hyperparameter%20Importance.png)