Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/hariprasath-v/dphi-data-sprint-52---covid-19-sars-b-cell-epitope-prediction

Predicting epitope regions using a machine learning model
https://github.com/hariprasath-v/dphi-data-sprint-52---covid-19-sars-b-cell-epitope-prediction

catboost optuna pandas python shap

Last synced: 5 days ago
JSON representation

Predicting epitope regions using a machine learning model

Awesome Lists containing this project

README

        

# Dphi-Data-Sprint-52---COVID-19-SARS-B-cell-Epitope-Prediction

# About

### Predicting epitope regions is beneficial for the design and development of vaccines aimed to induce antigen-specific antibody production.

### Competition hosted on Dphi

### Competition Leaderboard Rank - 2

### Evaluation Metric is F1 Score.

### File information

* Data_Sprint_52_COVID_19_SARS_B_cell_Epitope_Prediction.ipynb
### Packages Used,
* Sklearn
* catboost
* Pandas
* Numpy
* Matplotlib
* Optuna
* shap

### Created Catboost classifier model and tune the hyperparameters with the optuna framework.
### Model interpretation with shap
### Model accuracy score is 70.0699


### Feature Importance

![Alt text](https://github.com/hariprasath-v/Dphi-Data-Sprint-52---COVID-19-SARS-B-cell-Epitope-Prediction/blob/main/Feature%20%20Importance.png)

### Hyperparameter Importance

![Alt text](https://github.com/hariprasath-v/Dphi-Data-Sprint-52---COVID-19-SARS-B-cell-Epitope-Prediction/blob/main/Hyperparameter%20Importance.png)