Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hariprasath-v/hackerearth_transunion-data-science-analytics-hiring-challenge_2022
Machine learning model to classify the credit score based on people bank details and credit related information.
https://github.com/hariprasath-v/hackerearth_transunion-data-science-analytics-hiring-challenge_2022
catboost exploratory-data-analysis klib machine-learning matplotlib numpy optuna pandas python seaborn sklearn
Last synced: about 2 months ago
JSON representation
Machine learning model to classify the credit score based on people bank details and credit related information.
- Host: GitHub
- URL: https://github.com/hariprasath-v/hackerearth_transunion-data-science-analytics-hiring-challenge_2022
- Owner: hariprasath-v
- License: apache-2.0
- Created: 2022-06-21T05:47:26.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-06-21T05:59:24.000Z (over 2 years ago)
- Last Synced: 2023-03-04T22:49:19.558Z (almost 2 years ago)
- Topics: catboost, exploratory-data-analysis, klib, machine-learning, matplotlib, numpy, optuna, pandas, python, seaborn, sklearn
- Language: Jupyter Notebook
- Homepage:
- Size: 4.84 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Hackerearth_transunion-data-science-analytics-hiring-challenge_2022
### Competition hosted on Hackerearth
# About
### Machine learning model to classify the credit score based on people bank details and credit related information.
### Final Score 78.03
### Evaluation Metric is roc_wighted_ovr
### File information
* HE_transunion_data_science_analytics_hiring_challenge_EDA.ipynb
### Packages Used,
* seaborn
* Pandas
* klib
* Numpy
* Matplotlib
* re
### Basic Exploratory Data Analysis
* transunion-data-science-analytics-hiring-challenge_model.ipynb
### Packages Used,
* Sklearn
* re
* Pandas
* Numpy
* Matplotlib
* catboost
### Data Pre-processing
### Created catboost classifier with 5-fold stratified cross validatation and tuned the hyperparameters with optuna framework.
### Model explanation with SHAP
### [More information about data pre-processing and model tuning](https://github.com/hariprasath-v/Hackerearth_transunion-data-science-analytics-hiring-challenge_2022/blob/main/Approach%20%26%20Solution_transunion-data-science-analytics-hiring-challenge_2022.pdf)
### Catboost classifier model feature importances![Alt text](https://github.com/hariprasath-v/Hackerearth_transunion-data-science-analytics-hiring-challenge_2022/blob/main/Feature%20Importance%20Plot.png)
### Top features impact for Good class
![Alt text](https://github.com/hariprasath-v/Hackerearth_transunion-data-science-analytics-hiring-challenge_2022/blob/main/Top%20features%20impact%20for%20class%20Good.png)
### Top features impact for Standard class
![Alt text](https://github.com/hariprasath-v/Hackerearth_transunion-data-science-analytics-hiring-challenge_2022/blob/main/Top%20features%20impact%20for%20class%20Standard.png)
### Top features impact for Poor class
![Alt text](https://github.com/hariprasath-v/Hackerearth_transunion-data-science-analytics-hiring-challenge_2022/blob/main/Top%20features%20impact%20for%20class%20Poor.png)